| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pltnlt.b |
|- B = ( Base ` K ) |
| 2 |
|
pltnlt.s |
|- .< = ( lt ` K ) |
| 3 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 4 |
3 2
|
pltle |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` K ) Y ) ) |
| 5 |
4
|
3adant3r3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Y -> X ( le ` K ) Y ) ) |
| 6 |
3 2
|
pltle |
|- ( ( K e. Poset /\ Y e. B /\ Z e. B ) -> ( Y .< Z -> Y ( le ` K ) Z ) ) |
| 7 |
6
|
3adant3r1 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .< Z -> Y ( le ` K ) Z ) ) |
| 8 |
1 3
|
postr |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ( le ` K ) Y /\ Y ( le ` K ) Z ) -> X ( le ` K ) Z ) ) |
| 9 |
5 7 8
|
syl2and |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X ( le ` K ) Z ) ) |
| 10 |
1 2
|
pltn2lp |
|- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> -. ( X .< Y /\ Y .< X ) ) |
| 11 |
10
|
3adant3r3 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> -. ( X .< Y /\ Y .< X ) ) |
| 12 |
|
breq2 |
|- ( X = Z -> ( Y .< X <-> Y .< Z ) ) |
| 13 |
12
|
anbi2d |
|- ( X = Z -> ( ( X .< Y /\ Y .< X ) <-> ( X .< Y /\ Y .< Z ) ) ) |
| 14 |
13
|
notbid |
|- ( X = Z -> ( -. ( X .< Y /\ Y .< X ) <-> -. ( X .< Y /\ Y .< Z ) ) ) |
| 15 |
11 14
|
syl5ibcom |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Z -> -. ( X .< Y /\ Y .< Z ) ) ) |
| 16 |
15
|
necon2ad |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X =/= Z ) ) |
| 17 |
9 16
|
jcad |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> ( X ( le ` K ) Z /\ X =/= Z ) ) ) |
| 18 |
3 2
|
pltval |
|- ( ( K e. Poset /\ X e. B /\ Z e. B ) -> ( X .< Z <-> ( X ( le ` K ) Z /\ X =/= Z ) ) ) |
| 19 |
18
|
3adant3r2 |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Z <-> ( X ( le ` K ) Z /\ X =/= Z ) ) ) |
| 20 |
17 19
|
sylibrd |
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X .< Z ) ) |