Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | plusffn.1 | |- B = ( Base ` G ) |
|
| plusffn.2 | |- .+^ = ( +f ` G ) |
||
| Assertion | plusffn | |- .+^ Fn ( B X. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffn.1 | |- B = ( Base ` G ) |
|
| 2 | plusffn.2 | |- .+^ = ( +f ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 1 3 2 | plusffval | |- .+^ = ( x e. B , y e. B |-> ( x ( +g ` G ) y ) ) |
| 5 | ovex | |- ( x ( +g ` G ) y ) e. _V |
|
| 6 | 4 5 | fnmpoi | |- .+^ Fn ( B X. B ) |