Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plusffn.1 | |- B = ( Base ` G ) |
|
plusffn.2 | |- .+^ = ( +f ` G ) |
||
Assertion | plusffn | |- .+^ Fn ( B X. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffn.1 | |- B = ( Base ` G ) |
|
2 | plusffn.2 | |- .+^ = ( +f ` G ) |
|
3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
4 | 1 3 2 | plusffval | |- .+^ = ( x e. B , y e. B |-> ( x ( +g ` G ) y ) ) |
5 | ovex | |- ( x ( +g ` G ) y ) e. _V |
|
6 | 4 5 | fnmpoi | |- .+^ Fn ( B X. B ) |