Metamath Proof Explorer


Theorem plusffn

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses plusffn.1
|- B = ( Base ` G )
plusffn.2
|- .+^ = ( +f ` G )
Assertion plusffn
|- .+^ Fn ( B X. B )

Proof

Step Hyp Ref Expression
1 plusffn.1
 |-  B = ( Base ` G )
2 plusffn.2
 |-  .+^ = ( +f ` G )
3 eqid
 |-  ( +g ` G ) = ( +g ` G )
4 1 3 2 plusffval
 |-  .+^ = ( x e. B , y e. B |-> ( x ( +g ` G ) y ) )
5 ovex
 |-  ( x ( +g ` G ) y ) e. _V
6 4 5 fnmpoi
 |-  .+^ Fn ( B X. B )