Metamath Proof Explorer


Theorem plvcofph

Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofph.1
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) )
plvcofph.2
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) )
plvcofph.3
|- ( et <-> ( ch /\ ta ) )
plvcofph.4
|- ph
plvcofph.5
|- ps
plvcofph.6
|- th
Assertion plvcofph
|- et

Proof

Step Hyp Ref Expression
1 plvcofph.1
 |-  ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) )
2 plvcofph.2
 |-  ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) )
3 plvcofph.3
 |-  ( et <-> ( ch /\ ta ) )
4 plvcofph.4
 |-  ph
5 plvcofph.5
 |-  ps
6 plvcofph.6
 |-  th
7 1 4 5 plcofph
 |-  ch
8 2 4 5 7 6 pldofph
 |-  ta
9 7 8 pm3.2i
 |-  ( ch /\ ta )
10 3 bicomi
 |-  ( ( ch /\ ta ) <-> et )
11 10 biimpi
 |-  ( ( ch /\ ta ) -> et )
12 9 11 ax-mp
 |-  et