Metamath Proof Explorer
Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated.
(Contributed by Jarvin Udandy, 8-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
plvcofph.1 |
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) ) |
|
|
plvcofph.2 |
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) ) |
|
|
plvcofph.3 |
|- ( et <-> ( ch /\ ta ) ) |
|
|
plvcofph.4 |
|- ph |
|
|
plvcofph.5 |
|- ps |
|
|
plvcofph.6 |
|- th |
|
Assertion |
plvcofph |
|- et |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
plvcofph.1 |
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) ) |
2 |
|
plvcofph.2 |
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) ) |
3 |
|
plvcofph.3 |
|- ( et <-> ( ch /\ ta ) ) |
4 |
|
plvcofph.4 |
|- ph |
5 |
|
plvcofph.5 |
|- ps |
6 |
|
plvcofph.6 |
|- th |
7 |
1 4 5
|
plcofph |
|- ch |
8 |
2 4 5 7 6
|
pldofph |
|- ta |
9 |
7 8
|
pm3.2i |
|- ( ch /\ ta ) |
10 |
3
|
bicomi |
|- ( ( ch /\ ta ) <-> et ) |
11 |
10
|
biimpi |
|- ( ( ch /\ ta ) -> et ) |
12 |
9 11
|
ax-mp |
|- et |