Step |
Hyp |
Ref |
Expression |
1 |
|
plvcofphax.1 |
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) ) |
2 |
|
plvcofphax.2 |
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) ) |
3 |
|
plvcofphax.3 |
|- ( et <-> ( ch /\ ta ) ) |
4 |
|
plvcofphax.4 |
|- ph |
5 |
|
plvcofphax.5 |
|- ps |
6 |
|
plvcofphax.6 |
|- th |
7 |
|
plvcofphax.7 |
|- ( ze <-> -. ( ps /\ -. ta ) ) |
8 |
1 4 5
|
plcofph |
|- ch |
9 |
2 4 5 8 6
|
pldofph |
|- ta |
10 |
5 9
|
pm3.2i |
|- ( ps /\ ta ) |
11 |
|
pm3.4 |
|- ( ( ps /\ ta ) -> ( ps -> ta ) ) |
12 |
10 11
|
ax-mp |
|- ( ps -> ta ) |
13 |
|
iman |
|- ( ( ps -> ta ) <-> -. ( ps /\ -. ta ) ) |
14 |
13
|
biimpi |
|- ( ( ps -> ta ) -> -. ( ps /\ -. ta ) ) |
15 |
12 14
|
ax-mp |
|- -. ( ps /\ -. ta ) |
16 |
7
|
bicomi |
|- ( -. ( ps /\ -. ta ) <-> ze ) |
17 |
16
|
biimpi |
|- ( -. ( ps /\ -. ta ) -> ze ) |
18 |
15 17
|
ax-mp |
|- ze |