Metamath Proof Explorer


Theorem plvcofphax

Description: Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofphax.1
|- ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) )
plvcofphax.2
|- ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) )
plvcofphax.3
|- ( et <-> ( ch /\ ta ) )
plvcofphax.4
|- ph
plvcofphax.5
|- ps
plvcofphax.6
|- th
plvcofphax.7
|- ( ze <-> -. ( ps /\ -. ta ) )
Assertion plvcofphax
|- ze

Proof

Step Hyp Ref Expression
1 plvcofphax.1
 |-  ( ch <-> ( ( ( ( ph /\ ps ) <-> ph ) -> ( ph /\ -. ( ph /\ -. ph ) ) ) /\ ( ph /\ -. ( ph /\ -. ph ) ) ) )
2 plvcofphax.2
 |-  ( ta <-> ( ( ch -> th ) /\ ( ph <-> ch ) /\ ( ( ph -> ps ) -> ( ps <-> th ) ) ) )
3 plvcofphax.3
 |-  ( et <-> ( ch /\ ta ) )
4 plvcofphax.4
 |-  ph
5 plvcofphax.5
 |-  ps
6 plvcofphax.6
 |-  th
7 plvcofphax.7
 |-  ( ze <-> -. ( ps /\ -. ta ) )
8 1 4 5 plcofph
 |-  ch
9 2 4 5 8 6 pldofph
 |-  ta
10 5 9 pm3.2i
 |-  ( ps /\ ta )
11 pm3.4
 |-  ( ( ps /\ ta ) -> ( ps -> ta ) )
12 10 11 ax-mp
 |-  ( ps -> ta )
13 iman
 |-  ( ( ps -> ta ) <-> -. ( ps /\ -. ta ) )
14 13 biimpi
 |-  ( ( ps -> ta ) -> -. ( ps /\ -. ta ) )
15 12 14 ax-mp
 |-  -. ( ps /\ -. ta )
16 7 bicomi
 |-  ( -. ( ps /\ -. ta ) <-> ze )
17 16 biimpi
 |-  ( -. ( ps /\ -. ta ) -> ze )
18 15 17 ax-mp
 |-  ze