Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plvofpos.1 | |- ( ch <-> ( -. ph /\ -. ps ) ) |
|
plvofpos.2 | |- ( th <-> ( -. ph /\ ps ) ) |
||
plvofpos.3 | |- ( ta <-> ( ph /\ -. ps ) ) |
||
plvofpos.4 | |- ( et <-> ( ph /\ ps ) ) |
||
plvofpos.5 | |- ( ze <-> ( ( ( ( ( -. ( ( mu -> ch ) /\ ( mu -> th ) ) /\ -. ( ( mu -> ch ) /\ ( mu -> ta ) ) ) /\ -. ( ( mu -> ch ) /\ ( ch -> et ) ) ) /\ -. ( ( mu -> th ) /\ ( mu -> ta ) ) ) /\ -. ( ( mu -> th ) /\ ( mu -> et ) ) ) /\ -. ( ( mu -> ta ) /\ ( mu -> et ) ) ) ) |
||
plvofpos.6 | |- ( si <-> ( ( ( mu -> ch ) \/ ( mu -> th ) ) \/ ( ( mu -> ta ) \/ ( mu -> et ) ) ) ) |
||
plvofpos.7 | |- ( rh <-> ( ze /\ si ) ) |
||
plvofpos.8 | |- ze |
||
plvofpos.9 | |- si |
||
Assertion | plvofpos | |- rh |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plvofpos.1 | |- ( ch <-> ( -. ph /\ -. ps ) ) |
|
2 | plvofpos.2 | |- ( th <-> ( -. ph /\ ps ) ) |
|
3 | plvofpos.3 | |- ( ta <-> ( ph /\ -. ps ) ) |
|
4 | plvofpos.4 | |- ( et <-> ( ph /\ ps ) ) |
|
5 | plvofpos.5 | |- ( ze <-> ( ( ( ( ( -. ( ( mu -> ch ) /\ ( mu -> th ) ) /\ -. ( ( mu -> ch ) /\ ( mu -> ta ) ) ) /\ -. ( ( mu -> ch ) /\ ( ch -> et ) ) ) /\ -. ( ( mu -> th ) /\ ( mu -> ta ) ) ) /\ -. ( ( mu -> th ) /\ ( mu -> et ) ) ) /\ -. ( ( mu -> ta ) /\ ( mu -> et ) ) ) ) |
|
6 | plvofpos.6 | |- ( si <-> ( ( ( mu -> ch ) \/ ( mu -> th ) ) \/ ( ( mu -> ta ) \/ ( mu -> et ) ) ) ) |
|
7 | plvofpos.7 | |- ( rh <-> ( ze /\ si ) ) |
|
8 | plvofpos.8 | |- ze |
|
9 | plvofpos.9 | |- si |
|
10 | 8 9 | pm3.2i | |- ( ze /\ si ) |
11 | 7 | bicomi | |- ( ( ze /\ si ) <-> rh ) |
12 | 11 | biimpi | |- ( ( ze /\ si ) -> rh ) |
13 | 10 12 | ax-mp | |- rh |