Metamath Proof Explorer


Theorem ply0

Description: The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion ply0
|- ( S C_ CC -> 0p e. ( Poly ` S ) )

Proof

Step Hyp Ref Expression
1 df-0p
 |-  0p = ( CC X. { 0 } )
2 id
 |-  ( S C_ CC -> S C_ CC )
3 0cnd
 |-  ( S C_ CC -> 0 e. CC )
4 3 snssd
 |-  ( S C_ CC -> { 0 } C_ CC )
5 2 4 unssd
 |-  ( S C_ CC -> ( S u. { 0 } ) C_ CC )
6 ssun2
 |-  { 0 } C_ ( S u. { 0 } )
7 c0ex
 |-  0 e. _V
8 7 snss
 |-  ( 0 e. ( S u. { 0 } ) <-> { 0 } C_ ( S u. { 0 } ) )
9 6 8 mpbir
 |-  0 e. ( S u. { 0 } )
10 plyconst
 |-  ( ( ( S u. { 0 } ) C_ CC /\ 0 e. ( S u. { 0 } ) ) -> ( CC X. { 0 } ) e. ( Poly ` ( S u. { 0 } ) ) )
11 5 9 10 sylancl
 |-  ( S C_ CC -> ( CC X. { 0 } ) e. ( Poly ` ( S u. { 0 } ) ) )
12 1 11 eqeltrid
 |-  ( S C_ CC -> 0p e. ( Poly ` ( S u. { 0 } ) ) )
13 plyun0
 |-  ( Poly ` ( S u. { 0 } ) ) = ( Poly ` S )
14 12 13 eleqtrdi
 |-  ( S C_ CC -> 0p e. ( Poly ` S ) )