| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply10s0.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply10s0.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | ply10s0.m |  |-  .* = ( .s ` P ) | 
						
							| 4 |  | ply10s0.e |  |-  .0. = ( 0g ` R ) | 
						
							| 5 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. Ring /\ M e. B ) -> R = ( Scalar ` P ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( R e. Ring /\ M e. B ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 8 | 4 7 | eqtrid |  |-  ( ( R e. Ring /\ M e. B ) -> .0. = ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( ( 0g ` ( Scalar ` P ) ) .* M ) ) | 
						
							| 10 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) | 
						
							| 13 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 14 | 2 11 3 12 13 | lmod0vs |  |-  ( ( P e. LMod /\ M e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .* M ) = ( 0g ` P ) ) | 
						
							| 15 | 10 14 | sylan |  |-  ( ( R e. Ring /\ M e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .* M ) = ( 0g ` P ) ) | 
						
							| 16 | 9 15 | eqtrd |  |-  ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( 0g ` P ) ) |