| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1ascl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1ascl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` ( 1o mPoly R ) ) = ( Scalar ` ( 1o mPoly R ) ) | 
						
							| 5 | 1 | ply1sca |  |-  ( R e. _V -> R = ( Scalar ` P ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 7 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 8 |  | 1on |  |-  1o e. On | 
						
							| 9 | 8 | a1i |  |-  ( R e. _V -> 1o e. On ) | 
						
							| 10 |  | id |  |-  ( R e. _V -> R e. _V ) | 
						
							| 11 | 7 9 10 | mplsca |  |-  ( R e. _V -> R = ( Scalar ` ( 1o mPoly R ) ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 14 | 1 7 13 | ply1vsca |  |-  ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) | 
						
							| 15 | 14 | a1i |  |-  ( R e. _V -> ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) ) | 
						
							| 16 | 15 | oveqdr |  |-  ( ( R e. _V /\ ( x e. ( Base ` R ) /\ y e. _V ) ) -> ( x ( .s ` P ) y ) = ( x ( .s ` ( 1o mPoly R ) ) y ) ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 18 | 7 1 17 | ply1mpl1 |  |-  ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) | 
						
							| 19 | 18 | a1i |  |-  ( R e. _V -> ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) ) | 
						
							| 20 |  | fvexd |  |-  ( R e. _V -> ( 1r ` P ) e. _V ) | 
						
							| 21 | 3 4 6 12 16 19 20 | asclpropd |  |-  ( R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) ) | 
						
							| 22 |  | fvprc |  |-  ( -. R e. _V -> ( Poly1 ` R ) = (/) ) | 
						
							| 23 | 1 22 | eqtrid |  |-  ( -. R e. _V -> P = (/) ) | 
						
							| 24 |  | reldmmpl |  |-  Rel dom mPoly | 
						
							| 25 | 24 | ovprc2 |  |-  ( -. R e. _V -> ( 1o mPoly R ) = (/) ) | 
						
							| 26 | 23 25 | eqtr4d |  |-  ( -. R e. _V -> P = ( 1o mPoly R ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( -. R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) ) | 
						
							| 28 | 21 27 | pm2.61i |  |-  ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) | 
						
							| 29 | 2 28 | eqtri |  |-  A = ( algSc ` ( 1o mPoly R ) ) |