Step |
Hyp |
Ref |
Expression |
1 |
|
ply1ascl.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1ascl.a |
|- A = ( algSc ` P ) |
3 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
4 |
|
eqid |
|- ( Scalar ` ( 1o mPoly R ) ) = ( Scalar ` ( 1o mPoly R ) ) |
5 |
1
|
ply1sca |
|- ( R e. _V -> R = ( Scalar ` P ) ) |
6 |
5
|
fveq2d |
|- ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
7 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
8 |
|
1on |
|- 1o e. On |
9 |
8
|
a1i |
|- ( R e. _V -> 1o e. On ) |
10 |
|
id |
|- ( R e. _V -> R e. _V ) |
11 |
7 9 10
|
mplsca |
|- ( R e. _V -> R = ( Scalar ` ( 1o mPoly R ) ) ) |
12 |
11
|
fveq2d |
|- ( R e. _V -> ( Base ` R ) = ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) ) |
13 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
14 |
1 7 13
|
ply1vsca |
|- ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) |
15 |
14
|
a1i |
|- ( R e. _V -> ( .s ` P ) = ( .s ` ( 1o mPoly R ) ) ) |
16 |
15
|
oveqdr |
|- ( ( R e. _V /\ ( x e. ( Base ` R ) /\ y e. _V ) ) -> ( x ( .s ` P ) y ) = ( x ( .s ` ( 1o mPoly R ) ) y ) ) |
17 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
18 |
7 1 17
|
ply1mpl1 |
|- ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) |
19 |
18
|
a1i |
|- ( R e. _V -> ( 1r ` P ) = ( 1r ` ( 1o mPoly R ) ) ) |
20 |
|
fvexd |
|- ( R e. _V -> ( 1r ` P ) e. _V ) |
21 |
3 4 6 12 16 19 20
|
asclpropd |
|- ( R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) ) |
22 |
|
fvprc |
|- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
23 |
1 22
|
eqtrid |
|- ( -. R e. _V -> P = (/) ) |
24 |
|
reldmmpl |
|- Rel dom mPoly |
25 |
24
|
ovprc2 |
|- ( -. R e. _V -> ( 1o mPoly R ) = (/) ) |
26 |
23 25
|
eqtr4d |
|- ( -. R e. _V -> P = ( 1o mPoly R ) ) |
27 |
26
|
fveq2d |
|- ( -. R e. _V -> ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) ) |
28 |
21 27
|
pm2.61i |
|- ( algSc ` P ) = ( algSc ` ( 1o mPoly R ) ) |
29 |
2 28
|
eqtri |
|- A = ( algSc ` ( 1o mPoly R ) ) |