| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1ascl1.w |  |-  W = ( Poly1 ` R ) | 
						
							| 2 |  | ply1ascl1.a |  |-  A = ( algSc ` W ) | 
						
							| 3 |  | ply1ascl1.i |  |-  I = ( 1r ` R ) | 
						
							| 4 |  | ply1ascl1.1 |  |-  .1. = ( 1r ` W ) | 
						
							| 5 |  | ply1ascl1.r |  |-  ( ph -> R e. Ring ) | 
						
							| 6 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` W ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> R = ( Scalar ` W ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` W ) ) ) | 
						
							| 9 | 3 8 | eqtrid |  |-  ( ph -> I = ( 1r ` ( Scalar ` W ) ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ph -> ( ( algSc ` W ) ` I ) = ( ( algSc ` W ) ` ( 1r ` ( Scalar ` W ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( algSc ` W ) = ( algSc ` W ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 13 | 1 | ply1lmod |  |-  ( R e. Ring -> W e. LMod ) | 
						
							| 14 | 5 13 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 15 | 1 | ply1ring |  |-  ( R e. Ring -> W e. Ring ) | 
						
							| 16 | 5 15 | syl |  |-  ( ph -> W e. Ring ) | 
						
							| 17 | 11 12 14 16 | ascl1 |  |-  ( ph -> ( ( algSc ` W ) ` ( 1r ` ( Scalar ` W ) ) ) = ( 1r ` W ) ) | 
						
							| 18 | 10 17 | eqtrd |  |-  ( ph -> ( ( algSc ` W ) ` I ) = ( 1r ` W ) ) | 
						
							| 19 | 2 | fveq1i |  |-  ( A ` I ) = ( ( algSc ` W ) ` I ) | 
						
							| 20 | 18 19 4 | 3eqtr4g |  |-  ( ph -> ( A ` I ) = .1. ) |