Step |
Hyp |
Ref |
Expression |
1 |
|
ply1val.1 |
|- P = ( Poly1 ` R ) |
2 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
3 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
4 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
5 |
1 3 4
|
ply1subrg |
|- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
6 |
2 5
|
syl |
|- ( R e. CRing -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
7 |
1 3 4
|
ply1lss |
|- ( R e. Ring -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
8 |
2 7
|
syl |
|- ( R e. CRing -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
9 |
3
|
psr1assa |
|- ( R e. CRing -> ( PwSer1 ` R ) e. AssAlg ) |
10 |
|
eqid |
|- ( 1r ` ( PwSer1 ` R ) ) = ( 1r ` ( PwSer1 ` R ) ) |
11 |
10
|
subrg1cl |
|- ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) |
12 |
6 11
|
syl |
|- ( R e. CRing -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) |
13 |
|
eqid |
|- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
14 |
13
|
subrgss |
|- ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) |
15 |
6 14
|
syl |
|- ( R e. CRing -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) |
16 |
1 3
|
ply1val |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
17 |
1 3 4
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
18 |
17
|
oveq2i |
|- ( ( PwSer1 ` R ) |`s ( Base ` P ) ) = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
19 |
16 18
|
eqtr4i |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` P ) ) |
20 |
|
eqid |
|- ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) |
21 |
19 20 13 10
|
issubassa |
|- ( ( ( PwSer1 ` R ) e. AssAlg /\ ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) |
22 |
9 12 15 21
|
syl3anc |
|- ( R e. CRing -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) |
23 |
6 8 22
|
mpbir2and |
|- ( R e. CRing -> P e. AssAlg ) |