| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1val.1 |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 3 |  | eqid |  |-  ( PwSer1 ` R ) = ( PwSer1 ` R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 5 | 1 3 4 | ply1subrg |  |-  ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( R e. CRing -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) | 
						
							| 7 | 1 3 4 | ply1lss |  |-  ( R e. Ring -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( R e. CRing -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) | 
						
							| 9 | 3 | psr1assa |  |-  ( R e. CRing -> ( PwSer1 ` R ) e. AssAlg ) | 
						
							| 10 |  | eqid |  |-  ( 1r ` ( PwSer1 ` R ) ) = ( 1r ` ( PwSer1 ` R ) ) | 
						
							| 11 | 10 | subrg1cl |  |-  ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( R e. CRing -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) | 
						
							| 14 | 13 | subrgss |  |-  ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) | 
						
							| 15 | 6 14 | syl |  |-  ( R e. CRing -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) | 
						
							| 16 | 1 3 | ply1val |  |-  P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 17 | 1 4 | ply1bas |  |-  ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 18 | 17 | oveq2i |  |-  ( ( PwSer1 ` R ) |`s ( Base ` P ) ) = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 19 | 16 18 | eqtr4i |  |-  P = ( ( PwSer1 ` R ) |`s ( Base ` P ) ) | 
						
							| 20 |  | eqid |  |-  ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) | 
						
							| 21 | 19 20 13 10 | issubassa |  |-  ( ( ( PwSer1 ` R ) e. AssAlg /\ ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) | 
						
							| 22 | 9 12 15 21 | syl3anc |  |-  ( R e. CRing -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) | 
						
							| 23 | 6 8 22 | mpbir2and |  |-  ( R e. CRing -> P e. AssAlg ) |