Metamath Proof Explorer


Theorem ply1bas

Description: The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses ply1val.1
|- P = ( Poly1 ` R )
ply1val.2
|- S = ( PwSer1 ` R )
ply1bas.u
|- U = ( Base ` P )
Assertion ply1bas
|- U = ( Base ` ( 1o mPoly R ) )

Proof

Step Hyp Ref Expression
1 ply1val.1
 |-  P = ( Poly1 ` R )
2 ply1val.2
 |-  S = ( PwSer1 ` R )
3 ply1bas.u
 |-  U = ( Base ` P )
4 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
5 eqid
 |-  ( 1o mPwSer R ) = ( 1o mPwSer R )
6 eqid
 |-  ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) )
7 eqid
 |-  ( Base ` S ) = ( Base ` S )
8 2 7 5 psr1bas2
 |-  ( Base ` S ) = ( Base ` ( 1o mPwSer R ) )
9 4 5 6 8 mplbasss
 |-  ( Base ` ( 1o mPoly R ) ) C_ ( Base ` S )
10 1 2 ply1val
 |-  P = ( S |`s ( Base ` ( 1o mPoly R ) ) )
11 10 7 ressbas2
 |-  ( ( Base ` ( 1o mPoly R ) ) C_ ( Base ` S ) -> ( Base ` ( 1o mPoly R ) ) = ( Base ` P ) )
12 9 11 ax-mp
 |-  ( Base ` ( 1o mPoly R ) ) = ( Base ` P )
13 3 12 eqtr4i
 |-  U = ( Base ` ( 1o mPoly R ) )