Description: A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1bascl.p | |- P = ( Poly1 ` R ) |
|
ply1bascl.b | |- B = ( Base ` P ) |
||
Assertion | ply1bascl2 | |- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bascl.p | |- P = ( Poly1 ` R ) |
|
2 | ply1bascl.b | |- B = ( Base ` P ) |
|
3 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
4 | 1 3 2 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
5 | 4 | eleq2i | |- ( F e. B <-> F e. ( Base ` ( 1o mPoly R ) ) ) |
6 | 5 | biimpi | |- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |