Metamath Proof Explorer


Theorem ply1bascl2

Description: A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses ply1bascl.p
|- P = ( Poly1 ` R )
ply1bascl.b
|- B = ( Base ` P )
Assertion ply1bascl2
|- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) )

Proof

Step Hyp Ref Expression
1 ply1bascl.p
 |-  P = ( Poly1 ` R )
2 ply1bascl.b
 |-  B = ( Base ` P )
3 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
4 1 3 2 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
5 4 eleq2i
 |-  ( F e. B <-> F e. ( Base ` ( 1o mPoly R ) ) )
6 5 biimpi
 |-  ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) )