| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1rcl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1rcl.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | ply1basf.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 6 |  | psr1baslem |  |-  ( NN0 ^m 1o ) = { a e. ( NN0 ^m 1o ) | ( `' a " NN ) e. Fin } | 
						
							| 7 |  | id |  |-  ( F e. B -> F e. B ) | 
						
							| 8 | 1 2 | ply1bas |  |-  B = ( Base ` ( 1o mPoly R ) ) | 
						
							| 9 | 7 8 | eleqtrdi |  |-  ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 10 | 4 3 5 6 9 | mplelf |  |-  ( F e. B -> F : ( NN0 ^m 1o ) --> K ) |