| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1coe.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1coe.x |  |-  X = ( var1 ` R ) | 
						
							| 3 |  | ply1coe.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | ply1coe.n |  |-  .x. = ( .s ` P ) | 
						
							| 5 |  | ply1coe.m |  |-  M = ( mulGrp ` P ) | 
						
							| 6 |  | ply1coe.e |  |-  .^ = ( .g ` M ) | 
						
							| 7 |  | ply1coe.a |  |-  A = ( coe1 ` K ) | 
						
							| 8 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 9 |  | psr1baslem |  |-  ( NN0 ^m 1o ) = { d e. ( NN0 ^m 1o ) | ( `' d " NN ) e. Fin } | 
						
							| 10 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 12 |  | 1onn |  |-  1o e. _om | 
						
							| 13 | 12 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> 1o e. _om ) | 
						
							| 14 | 1 3 | ply1bas |  |-  B = ( Base ` ( 1o mPoly R ) ) | 
						
							| 15 | 1 8 4 | ply1vsca |  |-  .x. = ( .s ` ( 1o mPoly R ) ) | 
						
							| 16 |  | simpl |  |-  ( ( R e. Ring /\ K e. B ) -> R e. Ring ) | 
						
							| 17 |  | simpr |  |-  ( ( R e. Ring /\ K e. B ) -> K e. B ) | 
						
							| 18 | 8 9 10 11 13 14 15 16 17 | mplcoe1 |  |-  ( ( R e. Ring /\ K e. B ) -> K = ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) ) ) | 
						
							| 19 | 7 | fvcoe1 |  |-  ( ( K e. B /\ a e. ( NN0 ^m 1o ) ) -> ( K ` a ) = ( A ` ( a ` (/) ) ) ) | 
						
							| 20 | 19 | adantll |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( K ` a ) = ( A ` ( a ` (/) ) ) ) | 
						
							| 21 | 12 | a1i |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> 1o e. _om ) | 
						
							| 22 |  | eqid |  |-  ( mulGrp ` ( 1o mPoly R ) ) = ( mulGrp ` ( 1o mPoly R ) ) | 
						
							| 23 |  | eqid |  |-  ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) = ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) | 
						
							| 24 |  | eqid |  |-  ( 1o mVar R ) = ( 1o mVar R ) | 
						
							| 25 |  | simpll |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> R e. Ring ) | 
						
							| 26 |  | simpr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> a e. ( NN0 ^m 1o ) ) | 
						
							| 27 |  | eqidd |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) | 
						
							| 28 |  | 0ex |  |-  (/) e. _V | 
						
							| 29 |  | fveq2 |  |-  ( b = (/) -> ( ( 1o mVar R ) ` b ) = ( ( 1o mVar R ) ` (/) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( b = (/) -> ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) | 
						
							| 31 | 29 | oveq2d |  |-  ( b = (/) -> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) | 
						
							| 32 | 30 31 | eqeq12d |  |-  ( b = (/) -> ( ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) ) | 
						
							| 33 | 28 32 | ralsn |  |-  ( A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) | 
						
							| 34 | 27 33 | sylibr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( x = (/) -> ( ( 1o mVar R ) ` x ) = ( ( 1o mVar R ) ` (/) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( x = (/) -> ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) ) | 
						
							| 37 | 35 | oveq1d |  |-  ( x = (/) -> ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 38 | 36 37 | eqeq12d |  |-  ( x = (/) -> ( ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) ) | 
						
							| 39 | 38 | ralbidv |  |-  ( x = (/) -> ( A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) ) | 
						
							| 40 | 28 39 | ralsn |  |-  ( A. x e. { (/) } A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` (/) ) ) = ( ( ( 1o mVar R ) ` (/) ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 41 | 34 40 | sylibr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> A. x e. { (/) } A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 42 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 43 | 42 | raleqi |  |-  ( A. b e. 1o ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 44 | 42 43 | raleqbii |  |-  ( A. x e. 1o A. b e. 1o ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) <-> A. x e. { (/) } A. b e. { (/) } ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 45 | 41 44 | sylibr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> A. x e. 1o A. b e. 1o ( ( ( 1o mVar R ) ` b ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` x ) ) = ( ( ( 1o mVar R ) ` x ) ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` b ) ) ) | 
						
							| 46 | 8 9 10 11 21 22 23 24 25 26 45 | mplcoe5 |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) = ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) ) | 
						
							| 47 | 42 | mpteq1i |  |-  ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) = ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) | 
						
							| 48 | 47 | oveq2i |  |-  ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) | 
						
							| 49 | 8 | mplring |  |-  ( ( 1o e. _om /\ R e. Ring ) -> ( 1o mPoly R ) e. Ring ) | 
						
							| 50 | 12 49 | mpan |  |-  ( R e. Ring -> ( 1o mPoly R ) e. Ring ) | 
						
							| 51 | 22 | ringmgp |  |-  ( ( 1o mPoly R ) e. Ring -> ( mulGrp ` ( 1o mPoly R ) ) e. Mnd ) | 
						
							| 52 | 50 51 | syl |  |-  ( R e. Ring -> ( mulGrp ` ( 1o mPoly R ) ) e. Mnd ) | 
						
							| 53 | 52 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( mulGrp ` ( 1o mPoly R ) ) e. Mnd ) | 
						
							| 54 | 28 | a1i |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> (/) e. _V ) | 
						
							| 55 | 22 14 | mgpbas |  |-  B = ( Base ` ( mulGrp ` ( 1o mPoly R ) ) ) | 
						
							| 56 | 55 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> B = ( Base ` ( mulGrp ` ( 1o mPoly R ) ) ) ) | 
						
							| 57 | 5 3 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 58 | 57 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> B = ( Base ` M ) ) | 
						
							| 59 |  | ssv |  |-  B C_ _V | 
						
							| 60 | 59 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> B C_ _V ) | 
						
							| 61 |  | ovexd |  |-  ( ( ( R e. Ring /\ K e. B ) /\ ( a e. _V /\ b e. _V ) ) -> ( a ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) b ) e. _V ) | 
						
							| 62 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 63 | 1 8 62 | ply1mulr |  |-  ( .r ` P ) = ( .r ` ( 1o mPoly R ) ) | 
						
							| 64 | 22 63 | mgpplusg |  |-  ( .r ` P ) = ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) | 
						
							| 65 | 5 62 | mgpplusg |  |-  ( .r ` P ) = ( +g ` M ) | 
						
							| 66 | 64 65 | eqtr3i |  |-  ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) = ( +g ` M ) | 
						
							| 67 | 66 | oveqi |  |-  ( a ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) b ) = ( a ( +g ` M ) b ) | 
						
							| 68 | 67 | a1i |  |-  ( ( ( R e. Ring /\ K e. B ) /\ ( a e. _V /\ b e. _V ) ) -> ( a ( +g ` ( mulGrp ` ( 1o mPoly R ) ) ) b ) = ( a ( +g ` M ) b ) ) | 
						
							| 69 | 23 6 56 58 60 61 68 | mulgpropd |  |-  ( ( R e. Ring /\ K e. B ) -> ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) = .^ ) | 
						
							| 70 | 69 | oveqd |  |-  ( ( R e. Ring /\ K e. B ) -> ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) = ( ( a ` (/) ) .^ X ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) = ( ( a ` (/) ) .^ X ) ) | 
						
							| 72 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 73 | 5 | ringmgp |  |-  ( P e. Ring -> M e. Mnd ) | 
						
							| 74 | 72 73 | syl |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 75 | 74 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> M e. Mnd ) | 
						
							| 76 |  | elmapi |  |-  ( a e. ( NN0 ^m 1o ) -> a : 1o --> NN0 ) | 
						
							| 77 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 78 |  | ffvelcdm |  |-  ( ( a : 1o --> NN0 /\ (/) e. 1o ) -> ( a ` (/) ) e. NN0 ) | 
						
							| 79 | 76 77 78 | sylancl |  |-  ( a e. ( NN0 ^m 1o ) -> ( a ` (/) ) e. NN0 ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( a ` (/) ) e. NN0 ) | 
						
							| 81 | 2 1 3 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 82 | 81 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> X e. B ) | 
						
							| 83 | 57 6 75 80 82 | mulgnn0cld |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( a ` (/) ) .^ X ) e. B ) | 
						
							| 84 | 71 83 | eqeltrd |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) e. B ) | 
						
							| 85 |  | fveq2 |  |-  ( c = (/) -> ( a ` c ) = ( a ` (/) ) ) | 
						
							| 86 |  | fveq2 |  |-  ( c = (/) -> ( ( 1o mVar R ) ` c ) = ( ( 1o mVar R ) ` (/) ) ) | 
						
							| 87 | 2 | vr1val |  |-  X = ( ( 1o mVar R ) ` (/) ) | 
						
							| 88 | 86 87 | eqtr4di |  |-  ( c = (/) -> ( ( 1o mVar R ) ` c ) = X ) | 
						
							| 89 | 85 88 | oveq12d |  |-  ( c = (/) -> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) | 
						
							| 90 | 55 89 | gsumsn |  |-  ( ( ( mulGrp ` ( 1o mPoly R ) ) e. Mnd /\ (/) e. _V /\ ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) e. B ) -> ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) | 
						
							| 91 | 53 54 84 90 | syl3anc |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. { (/) } |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) | 
						
							| 92 | 48 91 | eqtrid |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( mulGrp ` ( 1o mPoly R ) ) gsum ( c e. 1o |-> ( ( a ` c ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) ( ( 1o mVar R ) ` c ) ) ) ) = ( ( a ` (/) ) ( .g ` ( mulGrp ` ( 1o mPoly R ) ) ) X ) ) | 
						
							| 93 | 46 92 71 | 3eqtrd |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) = ( ( a ` (/) ) .^ X ) ) | 
						
							| 94 | 20 93 | oveq12d |  |-  ( ( ( R e. Ring /\ K e. B ) /\ a e. ( NN0 ^m 1o ) ) -> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) | 
						
							| 95 | 94 | mpteq2dva |  |-  ( ( R e. Ring /\ K e. B ) -> ( a e. ( NN0 ^m 1o ) |-> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) | 
						
							| 96 | 95 | oveq2d |  |-  ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( K ` a ) .x. ( b e. ( NN0 ^m 1o ) |-> if ( b = a , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) ) = ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) ) | 
						
							| 97 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 98 | 97 | mptex |  |-  ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) e. _V | 
						
							| 99 | 98 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) e. _V ) | 
						
							| 100 | 1 | fvexi |  |-  P e. _V | 
						
							| 101 | 100 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> P e. _V ) | 
						
							| 102 |  | ovexd |  |-  ( ( R e. Ring /\ K e. B ) -> ( 1o mPoly R ) e. _V ) | 
						
							| 103 | 3 14 | eqtr3i |  |-  ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 104 | 103 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 105 |  | eqid |  |-  ( +g ` P ) = ( +g ` P ) | 
						
							| 106 | 1 8 105 | ply1plusg |  |-  ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) | 
						
							| 107 | 106 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) ) | 
						
							| 108 | 99 101 102 104 107 | gsumpropd |  |-  ( ( R e. Ring /\ K e. B ) -> ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( ( 1o mPoly R ) gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) | 
						
							| 109 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 110 | 8 1 109 | ply1mpl0 |  |-  ( 0g ` P ) = ( 0g ` ( 1o mPoly R ) ) | 
						
							| 111 | 8 | mpllmod |  |-  ( ( 1o e. _om /\ R e. Ring ) -> ( 1o mPoly R ) e. LMod ) | 
						
							| 112 | 12 16 111 | sylancr |  |-  ( ( R e. Ring /\ K e. B ) -> ( 1o mPoly R ) e. LMod ) | 
						
							| 113 |  | lmodcmn |  |-  ( ( 1o mPoly R ) e. LMod -> ( 1o mPoly R ) e. CMnd ) | 
						
							| 114 | 112 113 | syl |  |-  ( ( R e. Ring /\ K e. B ) -> ( 1o mPoly R ) e. CMnd ) | 
						
							| 115 | 97 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> NN0 e. _V ) | 
						
							| 116 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 117 | 116 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> P e. LMod ) | 
						
							| 118 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 119 | 7 3 1 118 | coe1f |  |-  ( K e. B -> A : NN0 --> ( Base ` R ) ) | 
						
							| 120 | 119 | adantl |  |-  ( ( R e. Ring /\ K e. B ) -> A : NN0 --> ( Base ` R ) ) | 
						
							| 121 | 120 | ffvelcdmda |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` R ) ) | 
						
							| 122 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 123 | 122 | eqcomd |  |-  ( R e. Ring -> ( Scalar ` P ) = R ) | 
						
							| 124 | 123 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( Scalar ` P ) = R ) | 
						
							| 125 | 124 | fveq2d |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) | 
						
							| 126 | 121 125 | eleqtrrd |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 127 | 74 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> M e. Mnd ) | 
						
							| 128 |  | simpr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 129 | 81 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> X e. B ) | 
						
							| 130 | 57 6 127 128 129 | mulgnn0cld |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. B ) | 
						
							| 131 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 132 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 133 | 3 131 4 132 | lmodvscl |  |-  ( ( P e. LMod /\ ( A ` k ) e. ( Base ` ( Scalar ` P ) ) /\ ( k .^ X ) e. B ) -> ( ( A ` k ) .x. ( k .^ X ) ) e. B ) | 
						
							| 134 | 117 126 130 133 | syl3anc |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ X ) ) e. B ) | 
						
							| 135 | 134 | fmpttd |  |-  ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) : NN0 --> B ) | 
						
							| 136 | 1 2 3 4 5 6 7 | ply1coefsupp |  |-  ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) | 
						
							| 137 |  | eqid |  |-  ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) | 
						
							| 138 | 42 97 28 137 | mapsnf1o2 |  |-  ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 | 
						
							| 139 | 138 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) : ( NN0 ^m 1o ) -1-1-onto-> NN0 ) | 
						
							| 140 | 14 110 114 115 135 136 139 | gsumf1o |  |-  ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( ( 1o mPoly R ) gsum ( ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) o. ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) ) ) | 
						
							| 141 |  | eqidd |  |-  ( ( R e. Ring /\ K e. B ) -> ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) | 
						
							| 142 |  | eqidd |  |-  ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) = ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) | 
						
							| 143 |  | fveq2 |  |-  ( k = ( a ` (/) ) -> ( A ` k ) = ( A ` ( a ` (/) ) ) ) | 
						
							| 144 |  | oveq1 |  |-  ( k = ( a ` (/) ) -> ( k .^ X ) = ( ( a ` (/) ) .^ X ) ) | 
						
							| 145 | 143 144 | oveq12d |  |-  ( k = ( a ` (/) ) -> ( ( A ` k ) .x. ( k .^ X ) ) = ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) | 
						
							| 146 | 80 141 142 145 | fmptco |  |-  ( ( R e. Ring /\ K e. B ) -> ( ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) o. ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) = ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) | 
						
							| 147 | 146 | oveq2d |  |-  ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) o. ( a e. ( NN0 ^m 1o ) |-> ( a ` (/) ) ) ) ) = ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) ) | 
						
							| 148 | 108 140 147 | 3eqtrrd |  |-  ( ( R e. Ring /\ K e. B ) -> ( ( 1o mPoly R ) gsum ( a e. ( NN0 ^m 1o ) |-> ( ( A ` ( a ` (/) ) ) .x. ( ( a ` (/) ) .^ X ) ) ) ) = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) | 
						
							| 149 | 18 96 148 | 3eqtrd |  |-  ( ( R e. Ring /\ K e. B ) -> K = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |