| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcoe1ply1eq.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | eqcoe1ply1eq.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | eqcoe1ply1eq.a |  |-  A = ( coe1 ` K ) | 
						
							| 4 |  | eqcoe1ply1eq.c |  |-  C = ( coe1 ` L ) | 
						
							| 5 | 1 2 3 4 | eqcoe1ply1eq |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> K = L ) ) | 
						
							| 6 |  | fveq2 |  |-  ( K = L -> ( coe1 ` K ) = ( coe1 ` L ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) -> ( coe1 ` K ) = ( coe1 ` L ) ) | 
						
							| 8 | 7 3 4 | 3eqtr4g |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) -> A = C ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) /\ k e. NN0 ) -> A = C ) | 
						
							| 10 | 9 | fveq1d |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) /\ k e. NN0 ) -> ( A ` k ) = ( C ` k ) ) | 
						
							| 11 | 10 | ralrimiva |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ K = L ) -> A. k e. NN0 ( A ` k ) = ( C ` k ) ) | 
						
							| 12 | 11 | ex |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( K = L -> A. k e. NN0 ( A ` k ) = ( C ` k ) ) ) | 
						
							| 13 | 5 12 | impbid |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) <-> K = L ) ) |