| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1coefsupp.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1coefsupp.x |  |-  X = ( var1 ` R ) | 
						
							| 3 |  | ply1coefsupp.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | ply1coefsupp.n |  |-  .x. = ( .s ` P ) | 
						
							| 5 |  | ply1coefsupp.m |  |-  M = ( mulGrp ` P ) | 
						
							| 6 |  | ply1coefsupp.e |  |-  .^ = ( .g ` M ) | 
						
							| 7 |  | ply1coefsupp.a |  |-  A = ( coe1 ` K ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 9 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 10 | 9 | adantr |  |-  ( ( R e. Ring /\ K e. B ) -> P e. LMod ) | 
						
							| 11 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ( R e. Ring /\ K e. B ) -> NN0 e. _V ) | 
						
							| 13 | 5 3 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 14 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 15 | 5 | ringmgp |  |-  ( P e. Ring -> M e. Mnd ) | 
						
							| 16 | 14 15 | syl |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> M e. Mnd ) | 
						
							| 18 |  | simpr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 19 | 2 1 3 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> X e. B ) | 
						
							| 21 | 13 6 17 18 20 | mulgnn0cld |  |-  ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. B ) | 
						
							| 22 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 23 | 7 3 1 22 | coe1f |  |-  ( K e. B -> A : NN0 --> ( Base ` R ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( R e. Ring /\ K e. B ) -> A : NN0 --> ( Base ` R ) ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 26 | 7 3 1 25 | coe1sfi |  |-  ( K e. B -> A finSupp ( 0g ` R ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( R e. Ring /\ K e. B ) -> A finSupp ( 0g ` R ) ) | 
						
							| 28 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( R e. Ring -> ( Scalar ` P ) = R ) | 
						
							| 30 | 29 | adantr |  |-  ( ( R e. Ring /\ K e. B ) -> ( Scalar ` P ) = R ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( R e. Ring /\ K e. B ) -> ( 0g ` ( Scalar ` P ) ) = ( 0g ` R ) ) | 
						
							| 32 | 27 31 | breqtrrd |  |-  ( ( R e. Ring /\ K e. B ) -> A finSupp ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 33 | 3 8 4 10 12 21 24 32 | mptscmfsuppd |  |-  ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |