| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1val.1 |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | eqid |  |-  ( PwSer1 ` R ) = ( PwSer1 ` R ) | 
						
							| 3 | 2 | psr1crng |  |-  ( R e. CRing -> ( PwSer1 ` R ) e. CRing ) | 
						
							| 4 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 5 | 1 4 | ply1bas |  |-  ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 6 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 7 | 1 2 4 | ply1subrg |  |-  ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( R e. CRing -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) | 
						
							| 9 | 5 8 | eqeltrrid |  |-  ( R e. CRing -> ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) | 
						
							| 10 | 1 2 | ply1val |  |-  P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 11 | 10 | subrgcrng |  |-  ( ( ( PwSer1 ` R ) e. CRing /\ ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) -> P e. CRing ) | 
						
							| 12 | 3 9 11 | syl2anc |  |-  ( R e. CRing -> P e. CRing ) |