Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1divalg.d |
|- D = ( deg1 ` R ) |
3 |
|
ply1divalg.b |
|- B = ( Base ` P ) |
4 |
|
ply1divalg.m |
|- .- = ( -g ` P ) |
5 |
|
ply1divalg.z |
|- .0. = ( 0g ` P ) |
6 |
|
ply1divalg.t |
|- .xb = ( .r ` P ) |
7 |
|
ply1divalg.r1 |
|- ( ph -> R e. Ring ) |
8 |
|
ply1divalg.f |
|- ( ph -> F e. B ) |
9 |
|
ply1divalg.g1 |
|- ( ph -> G e. B ) |
10 |
|
ply1divalg.g2 |
|- ( ph -> G =/= .0. ) |
11 |
|
ply1divalg.g3 |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) |
12 |
|
ply1divalg.u |
|- U = ( Unit ` R ) |
13 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
15 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
16 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
17 |
12 16 14
|
ringinvcl |
|- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) -> ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) e. ( Base ` R ) ) |
18 |
7 11 17
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) e. ( Base ` R ) ) |
19 |
12 16 15 13
|
unitrinv |
|- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) -> ( ( ( coe1 ` G ) ` ( D ` G ) ) ( .r ` R ) ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) ) = ( 1r ` R ) ) |
20 |
7 11 19
|
syl2anc |
|- ( ph -> ( ( ( coe1 ` G ) ` ( D ` G ) ) ( .r ` R ) ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) ) = ( 1r ` R ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 13 14 15 18 20
|
ply1divex |
|- ( ph -> E. q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) |
22 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
23 |
22 12
|
unitrrg |
|- ( R e. Ring -> U C_ ( RLReg ` R ) ) |
24 |
7 23
|
syl |
|- ( ph -> U C_ ( RLReg ` R ) ) |
25 |
24 11
|
sseldd |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( RLReg ` R ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 25 22
|
ply1divmo |
|- ( ph -> E* q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) |
27 |
|
reu5 |
|- ( E! q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) <-> ( E. q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) /\ E* q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) ) |
28 |
21 26 27
|
sylanbrc |
|- ( ph -> E! q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) |