Step |
Hyp |
Ref |
Expression |
1 |
|
ply1fermltl.z |
|- Z = ( Z/nZ ` P ) |
2 |
|
ply1fermltl.w |
|- W = ( Poly1 ` Z ) |
3 |
|
ply1fermltl.x |
|- X = ( var1 ` Z ) |
4 |
|
ply1fermltl.l |
|- .+ = ( +g ` W ) |
5 |
|
ply1fermltl.n |
|- N = ( mulGrp ` W ) |
6 |
|
ply1fermltl.t |
|- .^ = ( .g ` N ) |
7 |
|
ply1fermltl.c |
|- C = ( algSc ` W ) |
8 |
|
ply1fermltl.a |
|- A = ( C ` ( ( ZRHom ` Z ) ` E ) ) |
9 |
|
ply1fermltl.p |
|- ( ph -> P e. Prime ) |
10 |
|
ply1fermltl.1 |
|- ( ph -> E e. ZZ ) |
11 |
|
eqid |
|- ( chr ` Z ) = ( chr ` Z ) |
12 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
13 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
14 |
1
|
zncrng |
|- ( P e. NN0 -> Z e. CRing ) |
15 |
9 12 13 14
|
4syl |
|- ( ph -> Z e. CRing ) |
16 |
1
|
znchr |
|- ( P e. NN0 -> ( chr ` Z ) = P ) |
17 |
9 12 13 16
|
4syl |
|- ( ph -> ( chr ` Z ) = P ) |
18 |
17 9
|
eqeltrd |
|- ( ph -> ( chr ` Z ) e. Prime ) |
19 |
2 3 4 5 6 7 8 11 15 18 10
|
ply1fermltlchr |
|- ( ph -> ( ( chr ` Z ) .^ ( X .+ A ) ) = ( ( ( chr ` Z ) .^ X ) .+ A ) ) |
20 |
17
|
oveq1d |
|- ( ph -> ( ( chr ` Z ) .^ ( X .+ A ) ) = ( P .^ ( X .+ A ) ) ) |
21 |
17
|
oveq1d |
|- ( ph -> ( ( chr ` Z ) .^ X ) = ( P .^ X ) ) |
22 |
21
|
oveq1d |
|- ( ph -> ( ( ( chr ` Z ) .^ X ) .+ A ) = ( ( P .^ X ) .+ A ) ) |
23 |
19 20 22
|
3eqtr3d |
|- ( ph -> ( P .^ ( X .+ A ) ) = ( ( P .^ X ) .+ A ) ) |