Step |
Hyp |
Ref |
Expression |
1 |
|
ply1fermltlchr.w |
|- W = ( Poly1 ` F ) |
2 |
|
ply1fermltlchr.x |
|- X = ( var1 ` F ) |
3 |
|
ply1fermltlchr.l |
|- .+ = ( +g ` W ) |
4 |
|
ply1fermltlchr.n |
|- N = ( mulGrp ` W ) |
5 |
|
ply1fermltlchr.t |
|- .^ = ( .g ` N ) |
6 |
|
ply1fermltlchr.c |
|- C = ( algSc ` W ) |
7 |
|
ply1fermltlchr.a |
|- A = ( C ` ( ( ZRHom ` F ) ` E ) ) |
8 |
|
ply1fermltlchr.p |
|- P = ( chr ` F ) |
9 |
|
ply1fermltlchr.f |
|- ( ph -> F e. CRing ) |
10 |
|
ply1fermltlchr.1 |
|- ( ph -> P e. Prime ) |
11 |
|
ply1fermltlchr.2 |
|- ( ph -> E e. ZZ ) |
12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
13 |
4
|
fveq2i |
|- ( .g ` N ) = ( .g ` ( mulGrp ` W ) ) |
14 |
5 13
|
eqtri |
|- .^ = ( .g ` ( mulGrp ` W ) ) |
15 |
|
eqid |
|- ( chr ` W ) = ( chr ` W ) |
16 |
1
|
ply1crng |
|- ( F e. CRing -> W e. CRing ) |
17 |
9 16
|
syl |
|- ( ph -> W e. CRing ) |
18 |
1
|
ply1chr |
|- ( F e. CRing -> ( chr ` W ) = ( chr ` F ) ) |
19 |
9 18
|
syl |
|- ( ph -> ( chr ` W ) = ( chr ` F ) ) |
20 |
19 8
|
eqtr4di |
|- ( ph -> ( chr ` W ) = P ) |
21 |
20 10
|
eqeltrd |
|- ( ph -> ( chr ` W ) e. Prime ) |
22 |
9
|
crngringd |
|- ( ph -> F e. Ring ) |
23 |
2 1 12
|
vr1cl |
|- ( F e. Ring -> X e. ( Base ` W ) ) |
24 |
22 23
|
syl |
|- ( ph -> X e. ( Base ` W ) ) |
25 |
|
eqid |
|- ( ZRHom ` F ) = ( ZRHom ` F ) |
26 |
25
|
zrhrhm |
|- ( F e. Ring -> ( ZRHom ` F ) e. ( ZZring RingHom F ) ) |
27 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
28 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
29 |
27 28
|
rhmf |
|- ( ( ZRHom ` F ) e. ( ZZring RingHom F ) -> ( ZRHom ` F ) : ZZ --> ( Base ` F ) ) |
30 |
22 26 29
|
3syl |
|- ( ph -> ( ZRHom ` F ) : ZZ --> ( Base ` F ) ) |
31 |
30 11
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` F ) ` E ) e. ( Base ` F ) ) |
32 |
1 6 28 12
|
ply1sclcl |
|- ( ( F e. Ring /\ ( ( ZRHom ` F ) ` E ) e. ( Base ` F ) ) -> ( C ` ( ( ZRHom ` F ) ` E ) ) e. ( Base ` W ) ) |
33 |
22 31 32
|
syl2anc |
|- ( ph -> ( C ` ( ( ZRHom ` F ) ` E ) ) e. ( Base ` W ) ) |
34 |
7 33
|
eqeltrid |
|- ( ph -> A e. ( Base ` W ) ) |
35 |
12 3 14 15 17 21 24 34
|
freshmansdream |
|- ( ph -> ( ( chr ` W ) .^ ( X .+ A ) ) = ( ( ( chr ` W ) .^ X ) .+ ( ( chr ` W ) .^ A ) ) ) |
36 |
20
|
oveq1d |
|- ( ph -> ( ( chr ` W ) .^ ( X .+ A ) ) = ( P .^ ( X .+ A ) ) ) |
37 |
20
|
oveq1d |
|- ( ph -> ( ( chr ` W ) .^ X ) = ( P .^ X ) ) |
38 |
20
|
oveq1d |
|- ( ph -> ( ( chr ` W ) .^ A ) = ( P .^ A ) ) |
39 |
1
|
ply1assa |
|- ( F e. CRing -> W e. AssAlg ) |
40 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
41 |
6 40
|
asclrhm |
|- ( W e. AssAlg -> C e. ( ( Scalar ` W ) RingHom W ) ) |
42 |
9 39 41
|
3syl |
|- ( ph -> C e. ( ( Scalar ` W ) RingHom W ) ) |
43 |
9
|
crnggrpd |
|- ( ph -> F e. Grp ) |
44 |
1
|
ply1sca |
|- ( F e. Grp -> F = ( Scalar ` W ) ) |
45 |
43 44
|
syl |
|- ( ph -> F = ( Scalar ` W ) ) |
46 |
45
|
oveq1d |
|- ( ph -> ( F RingHom W ) = ( ( Scalar ` W ) RingHom W ) ) |
47 |
42 46
|
eleqtrrd |
|- ( ph -> C e. ( F RingHom W ) ) |
48 |
|
eqid |
|- ( mulGrp ` F ) = ( mulGrp ` F ) |
49 |
48 4
|
rhmmhm |
|- ( C e. ( F RingHom W ) -> C e. ( ( mulGrp ` F ) MndHom N ) ) |
50 |
47 49
|
syl |
|- ( ph -> C e. ( ( mulGrp ` F ) MndHom N ) ) |
51 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
52 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
53 |
10 51 52
|
3syl |
|- ( ph -> P e. NN0 ) |
54 |
48 28
|
mgpbas |
|- ( Base ` F ) = ( Base ` ( mulGrp ` F ) ) |
55 |
|
eqid |
|- ( .g ` ( mulGrp ` F ) ) = ( .g ` ( mulGrp ` F ) ) |
56 |
54 55 5
|
mhmmulg |
|- ( ( C e. ( ( mulGrp ` F ) MndHom N ) /\ P e. NN0 /\ ( ( ZRHom ` F ) ` E ) e. ( Base ` F ) ) -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( P .^ ( C ` ( ( ZRHom ` F ) ` E ) ) ) ) |
57 |
50 53 31 56
|
syl3anc |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( P .^ ( C ` ( ( ZRHom ` F ) ` E ) ) ) ) |
58 |
7
|
a1i |
|- ( ph -> A = ( C ` ( ( ZRHom ` F ) ` E ) ) ) |
59 |
58
|
oveq2d |
|- ( ph -> ( P .^ A ) = ( P .^ ( C ` ( ( ZRHom ` F ) ` E ) ) ) ) |
60 |
57 59
|
eqtr4d |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( P .^ A ) ) |
61 |
|
eqid |
|- ( ( ZRHom ` F ) ` E ) = ( ( ZRHom ` F ) ` E ) |
62 |
8 28 55 61 10 11 9
|
fermltlchr |
|- ( ph -> ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) = ( ( ZRHom ` F ) ` E ) ) |
63 |
62
|
fveq2d |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( C ` ( ( ZRHom ` F ) ` E ) ) ) |
64 |
63 7
|
eqtr4di |
|- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = A ) |
65 |
38 60 64
|
3eqtr2d |
|- ( ph -> ( ( chr ` W ) .^ A ) = A ) |
66 |
37 65
|
oveq12d |
|- ( ph -> ( ( ( chr ` W ) .^ X ) .+ ( ( chr ` W ) .^ A ) ) = ( ( P .^ X ) .+ A ) ) |
67 |
35 36 66
|
3eqtr3d |
|- ( ph -> ( P .^ ( X .+ A ) ) = ( ( P .^ X ) .+ A ) ) |