Step |
Hyp |
Ref |
Expression |
1 |
|
ply1frcl.q |
|- Q = ran ( S evalSub1 R ) |
2 |
|
ne0i |
|- ( X e. ran ( S evalSub1 R ) -> ran ( S evalSub1 R ) =/= (/) ) |
3 |
2 1
|
eleq2s |
|- ( X e. Q -> ran ( S evalSub1 R ) =/= (/) ) |
4 |
|
rneq |
|- ( ( S evalSub1 R ) = (/) -> ran ( S evalSub1 R ) = ran (/) ) |
5 |
|
rn0 |
|- ran (/) = (/) |
6 |
4 5
|
eqtrdi |
|- ( ( S evalSub1 R ) = (/) -> ran ( S evalSub1 R ) = (/) ) |
7 |
6
|
necon3i |
|- ( ran ( S evalSub1 R ) =/= (/) -> ( S evalSub1 R ) =/= (/) ) |
8 |
|
n0 |
|- ( ( S evalSub1 R ) =/= (/) <-> E. e e e. ( S evalSub1 R ) ) |
9 |
|
df-evls1 |
|- evalSub1 = ( s e. _V , r e. ~P ( Base ` s ) |-> [_ ( Base ` s ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub s ) ` r ) ) ) |
10 |
9
|
dmmpossx |
|- dom evalSub1 C_ U_ s e. _V ( { s } X. ~P ( Base ` s ) ) |
11 |
|
elfvdm |
|- ( e e. ( evalSub1 ` <. S , R >. ) -> <. S , R >. e. dom evalSub1 ) |
12 |
|
df-ov |
|- ( S evalSub1 R ) = ( evalSub1 ` <. S , R >. ) |
13 |
11 12
|
eleq2s |
|- ( e e. ( S evalSub1 R ) -> <. S , R >. e. dom evalSub1 ) |
14 |
10 13
|
sselid |
|- ( e e. ( S evalSub1 R ) -> <. S , R >. e. U_ s e. _V ( { s } X. ~P ( Base ` s ) ) ) |
15 |
|
fveq2 |
|- ( s = S -> ( Base ` s ) = ( Base ` S ) ) |
16 |
15
|
pweqd |
|- ( s = S -> ~P ( Base ` s ) = ~P ( Base ` S ) ) |
17 |
16
|
opeliunxp2 |
|- ( <. S , R >. e. U_ s e. _V ( { s } X. ~P ( Base ` s ) ) <-> ( S e. _V /\ R e. ~P ( Base ` S ) ) ) |
18 |
14 17
|
sylib |
|- ( e e. ( S evalSub1 R ) -> ( S e. _V /\ R e. ~P ( Base ` S ) ) ) |
19 |
18
|
exlimiv |
|- ( E. e e e. ( S evalSub1 R ) -> ( S e. _V /\ R e. ~P ( Base ` S ) ) ) |
20 |
8 19
|
sylbi |
|- ( ( S evalSub1 R ) =/= (/) -> ( S e. _V /\ R e. ~P ( Base ` S ) ) ) |
21 |
3 7 20
|
3syl |
|- ( X e. Q -> ( S e. _V /\ R e. ~P ( Base ` S ) ) ) |