Step |
Hyp |
Ref |
Expression |
1 |
|
ply1gsumz.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1gsumz.b |
|- B = ( Base ` R ) |
3 |
|
ply1gsumz.n |
|- ( ph -> N e. NN0 ) |
4 |
|
ply1gsumz.r |
|- ( ph -> R e. Ring ) |
5 |
|
ply1gsumz.f |
|- F = ( n e. ( 0 ..^ N ) |-> ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
6 |
|
ply1gsumz.1 |
|- .0. = ( 0g ` R ) |
7 |
|
ply1gsumz.z |
|- Z = ( 0g ` P ) |
8 |
|
ply1gsumz.a |
|- ( ph -> A : ( 0 ..^ N ) --> B ) |
9 |
|
ply1gsumz.s |
|- ( ph -> ( P gsum ( A oF ( .s ` P ) F ) ) = Z ) |
10 |
8
|
ffnd |
|- ( ph -> A Fn ( 0 ..^ N ) ) |
11 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
12 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
13 |
12 7
|
ring0cl |
|- ( P e. Ring -> Z e. ( Base ` P ) ) |
14 |
4 11 13
|
3syl |
|- ( ph -> Z e. ( Base ` P ) ) |
15 |
|
eqid |
|- ( coe1 ` Z ) = ( coe1 ` Z ) |
16 |
15 12 1 2
|
coe1f |
|- ( Z e. ( Base ` P ) -> ( coe1 ` Z ) : NN0 --> B ) |
17 |
14 16
|
syl |
|- ( ph -> ( coe1 ` Z ) : NN0 --> B ) |
18 |
17
|
ffnd |
|- ( ph -> ( coe1 ` Z ) Fn NN0 ) |
19 |
|
fzo0ssnn0 |
|- ( 0 ..^ N ) C_ NN0 |
20 |
19
|
a1i |
|- ( ph -> ( 0 ..^ N ) C_ NN0 ) |
21 |
18 20
|
fnssresd |
|- ( ph -> ( ( coe1 ` Z ) |` ( 0 ..^ N ) ) Fn ( 0 ..^ N ) ) |
22 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> j e. ( 0 ..^ N ) ) |
23 |
22
|
fvresd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( ( coe1 ` Z ) |` ( 0 ..^ N ) ) ` j ) = ( ( coe1 ` Z ) ` j ) ) |
24 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ N ) -> j e. NN0 ) |
25 |
9 14
|
eqeltrd |
|- ( ph -> ( P gsum ( A oF ( .s ` P ) F ) ) e. ( Base ` P ) ) |
26 |
|
eqid |
|- ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) = ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) |
27 |
1 12 26 15
|
ply1coe1eq |
|- ( ( R e. Ring /\ ( P gsum ( A oF ( .s ` P ) F ) ) e. ( Base ` P ) /\ Z e. ( Base ` P ) ) -> ( A. j e. NN0 ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( ( coe1 ` Z ) ` j ) <-> ( P gsum ( A oF ( .s ` P ) F ) ) = Z ) ) |
28 |
27
|
biimpar |
|- ( ( ( R e. Ring /\ ( P gsum ( A oF ( .s ` P ) F ) ) e. ( Base ` P ) /\ Z e. ( Base ` P ) ) /\ ( P gsum ( A oF ( .s ` P ) F ) ) = Z ) -> A. j e. NN0 ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( ( coe1 ` Z ) ` j ) ) |
29 |
4 25 14 9 28
|
syl31anc |
|- ( ph -> A. j e. NN0 ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( ( coe1 ` Z ) ` j ) ) |
30 |
29
|
r19.21bi |
|- ( ( ph /\ j e. NN0 ) -> ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( ( coe1 ` Z ) ` j ) ) |
31 |
24 30
|
sylan2 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( ( coe1 ` Z ) ` j ) ) |
32 |
10
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> A Fn ( 0 ..^ N ) ) |
33 |
|
nfv |
|- F/ n ph |
34 |
|
ovexd |
|- ( ( ph /\ n e. ( 0 ..^ N ) ) -> ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. _V ) |
35 |
33 34 5
|
fnmptd |
|- ( ph -> F Fn ( 0 ..^ N ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> F Fn ( 0 ..^ N ) ) |
37 |
|
ovexd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( 0 ..^ N ) e. _V ) |
38 |
|
inidm |
|- ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) = ( 0 ..^ N ) |
39 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ N ) ) -> ( A ` i ) = ( A ` i ) ) |
40 |
|
oveq1 |
|- ( n = i -> ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
41 |
|
simpr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ N ) ) -> i e. ( 0 ..^ N ) ) |
42 |
|
ovexd |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ N ) ) -> ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. _V ) |
43 |
5 40 41 42
|
fvmptd3 |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ N ) ) -> ( F ` i ) = ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
44 |
32 36 37 37 38 39 43
|
offval |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A oF ( .s ` P ) F ) = ( i e. ( 0 ..^ N ) |-> ( ( A ` i ) ( .s ` P ) ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) |
45 |
44
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( P gsum ( A oF ( .s ` P ) F ) ) = ( P gsum ( i e. ( 0 ..^ N ) |-> ( ( A ` i ) ( .s ` P ) ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
46 |
45
|
fveq2d |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) = ( coe1 ` ( P gsum ( i e. ( 0 ..^ N ) |-> ( ( A ` i ) ( .s ` P ) ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ) |
47 |
46
|
fveq1d |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( ( coe1 ` ( P gsum ( i e. ( 0 ..^ N ) |-> ( ( A ` i ) ( .s ` P ) ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ` j ) ) |
48 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
49 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
50 |
4
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> R e. Ring ) |
51 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
52 |
8
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> A : ( 0 ..^ N ) --> B ) |
53 |
52
|
ffvelcdmda |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ N ) ) -> ( A ` i ) e. B ) |
54 |
53
|
ralrimiva |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> A. i e. ( 0 ..^ N ) ( A ` i ) e. B ) |
55 |
3
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> N e. NN0 ) |
56 |
|
fveq2 |
|- ( i = j -> ( A ` i ) = ( A ` j ) ) |
57 |
1 12 48 49 50 2 51 6 54 22 55 56
|
gsummoncoe1fzo |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( coe1 ` ( P gsum ( i e. ( 0 ..^ N ) |-> ( ( A ` i ) ( .s ` P ) ( i ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ` j ) = ( A ` j ) ) |
58 |
47 57
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( coe1 ` ( P gsum ( A oF ( .s ` P ) F ) ) ) ` j ) = ( A ` j ) ) |
59 |
23 31 58
|
3eqtr2rd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A ` j ) = ( ( ( coe1 ` Z ) |` ( 0 ..^ N ) ) ` j ) ) |
60 |
10 21 59
|
eqfnfvd |
|- ( ph -> A = ( ( coe1 ` Z ) |` ( 0 ..^ N ) ) ) |
61 |
1 7 6
|
coe1z |
|- ( R e. Ring -> ( coe1 ` Z ) = ( NN0 X. { .0. } ) ) |
62 |
4 61
|
syl |
|- ( ph -> ( coe1 ` Z ) = ( NN0 X. { .0. } ) ) |
63 |
62
|
reseq1d |
|- ( ph -> ( ( coe1 ` Z ) |` ( 0 ..^ N ) ) = ( ( NN0 X. { .0. } ) |` ( 0 ..^ N ) ) ) |
64 |
60 63
|
eqtrd |
|- ( ph -> A = ( ( NN0 X. { .0. } ) |` ( 0 ..^ N ) ) ) |
65 |
|
xpssres |
|- ( ( 0 ..^ N ) C_ NN0 -> ( ( NN0 X. { .0. } ) |` ( 0 ..^ N ) ) = ( ( 0 ..^ N ) X. { .0. } ) ) |
66 |
19 65
|
ax-mp |
|- ( ( NN0 X. { .0. } ) |` ( 0 ..^ N ) ) = ( ( 0 ..^ N ) X. { .0. } ) |
67 |
64 66
|
eqtrdi |
|- ( ph -> A = ( ( 0 ..^ N ) X. { .0. } ) ) |