| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1lmod.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | eqid |  |-  ( PwSer1 ` R ) = ( PwSer1 ` R ) | 
						
							| 3 | 2 | psr1lmod |  |-  ( R e. Ring -> ( PwSer1 ` R ) e. LMod ) | 
						
							| 4 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) | 
						
							| 6 | 4 5 | ply1bas |  |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 7 | 4 2 5 | ply1lss |  |-  ( R e. Ring -> ( Base ` ( Poly1 ` R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) | 
						
							| 8 | 6 7 | eqeltrrid |  |-  ( R e. Ring -> ( Base ` ( 1o mPoly R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) | 
						
							| 9 | 1 2 | ply1val |  |-  P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) | 
						
							| 10 |  | eqid |  |-  ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) | 
						
							| 11 | 9 10 | lsslmod |  |-  ( ( ( PwSer1 ` R ) e. LMod /\ ( Base ` ( 1o mPoly R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) -> P e. LMod ) | 
						
							| 12 | 3 8 11 | syl2anc |  |-  ( R e. Ring -> P e. LMod ) |