Step |
Hyp |
Ref |
Expression |
1 |
|
ply1moncl.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1moncl.x |
|- X = ( var1 ` R ) |
3 |
|
ply1moncl.n |
|- N = ( mulGrp ` P ) |
4 |
|
ply1moncl.e |
|- .^ = ( .g ` N ) |
5 |
|
ply1moncl.b |
|- B = ( Base ` P ) |
6 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
7 |
3
|
ringmgp |
|- ( P e. Ring -> N e. Mnd ) |
8 |
6 7
|
syl |
|- ( R e. Ring -> N e. Mnd ) |
9 |
8
|
adantr |
|- ( ( R e. Ring /\ D e. NN0 ) -> N e. Mnd ) |
10 |
|
simpr |
|- ( ( R e. Ring /\ D e. NN0 ) -> D e. NN0 ) |
11 |
2 1 5
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
12 |
11
|
adantr |
|- ( ( R e. Ring /\ D e. NN0 ) -> X e. B ) |
13 |
3 5
|
mgpbas |
|- B = ( Base ` N ) |
14 |
13 4
|
mulgnn0cl |
|- ( ( N e. Mnd /\ D e. NN0 /\ X e. B ) -> ( D .^ X ) e. B ) |
15 |
9 10 12 14
|
syl3anc |
|- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B ) |