Metamath Proof Explorer


Theorem ply1moncl

Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1moncl.p
|- P = ( Poly1 ` R )
ply1moncl.x
|- X = ( var1 ` R )
ply1moncl.n
|- N = ( mulGrp ` P )
ply1moncl.e
|- .^ = ( .g ` N )
ply1moncl.b
|- B = ( Base ` P )
Assertion ply1moncl
|- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B )

Proof

Step Hyp Ref Expression
1 ply1moncl.p
 |-  P = ( Poly1 ` R )
2 ply1moncl.x
 |-  X = ( var1 ` R )
3 ply1moncl.n
 |-  N = ( mulGrp ` P )
4 ply1moncl.e
 |-  .^ = ( .g ` N )
5 ply1moncl.b
 |-  B = ( Base ` P )
6 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
7 3 ringmgp
 |-  ( P e. Ring -> N e. Mnd )
8 6 7 syl
 |-  ( R e. Ring -> N e. Mnd )
9 8 adantr
 |-  ( ( R e. Ring /\ D e. NN0 ) -> N e. Mnd )
10 simpr
 |-  ( ( R e. Ring /\ D e. NN0 ) -> D e. NN0 )
11 2 1 5 vr1cl
 |-  ( R e. Ring -> X e. B )
12 11 adantr
 |-  ( ( R e. Ring /\ D e. NN0 ) -> X e. B )
13 3 5 mgpbas
 |-  B = ( Base ` N )
14 13 4 mulgnn0cl
 |-  ( ( N e. Mnd /\ D e. NN0 /\ X e. B ) -> ( D .^ X ) e. B )
15 9 10 12 14 syl3anc
 |-  ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B )