Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mpl0.m |
|- M = ( 1o mPoly R ) |
2 |
|
ply1mpl0.p |
|- P = ( Poly1 ` R ) |
3 |
|
ply1mpl0.z |
|- .0. = ( 0g ` P ) |
4 |
|
eqidd |
|- ( T. -> ( Base ` P ) = ( Base ` P ) ) |
5 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
6 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
7 |
2 5 6
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
8 |
1
|
fveq2i |
|- ( Base ` M ) = ( Base ` ( 1o mPoly R ) ) |
9 |
7 8
|
eqtr4i |
|- ( Base ` P ) = ( Base ` M ) |
10 |
9
|
a1i |
|- ( T. -> ( Base ` P ) = ( Base ` M ) ) |
11 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
12 |
2 1 11
|
ply1plusg |
|- ( +g ` P ) = ( +g ` M ) |
13 |
12
|
a1i |
|- ( T. -> ( +g ` P ) = ( +g ` M ) ) |
14 |
13
|
oveqdr |
|- ( ( T. /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` M ) y ) ) |
15 |
4 10 14
|
grpidpropd |
|- ( T. -> ( 0g ` P ) = ( 0g ` M ) ) |
16 |
15
|
mptru |
|- ( 0g ` P ) = ( 0g ` M ) |
17 |
3 16
|
eqtri |
|- .0. = ( 0g ` M ) |