| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1domn.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | nzrring |  |-  ( R e. NzRing -> R e. Ring ) | 
						
							| 3 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 4 | 2 3 | syl |  |-  ( R e. NzRing -> P e. Ring ) | 
						
							| 5 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 8 | 1 5 6 7 | ply1sclf |  |-  ( R e. Ring -> ( algSc ` P ) : ( Base ` R ) --> ( Base ` P ) ) | 
						
							| 9 | 2 8 | syl |  |-  ( R e. NzRing -> ( algSc ` P ) : ( Base ` R ) --> ( Base ` P ) ) | 
						
							| 10 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 11 | 6 10 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 12 | 2 11 | syl |  |-  ( R e. NzRing -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 13 | 9 12 | ffvelcdmd |  |-  ( R e. NzRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 15 | 10 14 | nzrnz |  |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 17 | 1 5 14 16 6 | ply1scln0 |  |-  ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( algSc ` P ) ` ( 1r ` R ) ) =/= ( 0g ` P ) ) | 
						
							| 18 | 2 12 15 17 | syl3anc |  |-  ( R e. NzRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) =/= ( 0g ` P ) ) | 
						
							| 19 |  | eldifsn |  |-  ( ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( ( Base ` P ) \ { ( 0g ` P ) } ) <-> ( ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( Base ` P ) /\ ( ( algSc ` P ) ` ( 1r ` R ) ) =/= ( 0g ` P ) ) ) | 
						
							| 20 | 13 18 19 | sylanbrc |  |-  ( R e. NzRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( ( Base ` P ) \ { ( 0g ` P ) } ) ) | 
						
							| 21 | 16 7 | ringelnzr |  |-  ( ( P e. Ring /\ ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( ( Base ` P ) \ { ( 0g ` P ) } ) ) -> P e. NzRing ) | 
						
							| 22 | 4 20 21 | syl2anc |  |-  ( R e. NzRing -> P e. NzRing ) |