Step |
Hyp |
Ref |
Expression |
1 |
|
ply1opprmul.y |
|- Y = ( Poly1 ` R ) |
2 |
|
ply1opprmul.s |
|- S = ( oppR ` R ) |
3 |
|
ply1opprmul.z |
|- Z = ( Poly1 ` S ) |
4 |
|
ply1opprmul.t |
|- .x. = ( .r ` Y ) |
5 |
|
ply1opprmul.u |
|- .xb = ( .r ` Z ) |
6 |
|
ply1opprmul.b |
|- B = ( Base ` Y ) |
7 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
8 |
1 6
|
ply1bascl |
|- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
9 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
10 |
|
eqid |
|- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
11 |
9 10
|
psr1bascl |
|- ( F e. ( Base ` ( PwSer1 ` R ) ) -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
12 |
8 11
|
syl |
|- ( F e. B -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
13 |
1 6
|
ply1bascl |
|- ( G e. B -> G e. ( Base ` ( PwSer1 ` R ) ) ) |
14 |
9 10
|
psr1bascl |
|- ( G e. ( Base ` ( PwSer1 ` R ) ) -> G e. ( Base ` ( 1o mPwSer R ) ) ) |
15 |
13 14
|
syl |
|- ( G e. B -> G e. ( Base ` ( 1o mPwSer R ) ) ) |
16 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
17 |
|
eqid |
|- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
18 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
19 |
1 18 4
|
ply1mulr |
|- .x. = ( .r ` ( 1o mPoly R ) ) |
20 |
18 16 19
|
mplmulr |
|- .x. = ( .r ` ( 1o mPwSer R ) ) |
21 |
|
eqid |
|- ( 1o mPoly S ) = ( 1o mPoly S ) |
22 |
3 21 5
|
ply1mulr |
|- .xb = ( .r ` ( 1o mPoly S ) ) |
23 |
21 17 22
|
mplmulr |
|- .xb = ( .r ` ( 1o mPwSer S ) ) |
24 |
|
eqid |
|- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
25 |
16 2 17 20 23 24
|
psropprmul |
|- ( ( R e. Ring /\ F e. ( Base ` ( 1o mPwSer R ) ) /\ G e. ( Base ` ( 1o mPwSer R ) ) ) -> ( F .xb G ) = ( G .x. F ) ) |
26 |
7 12 15 25
|
syl3an |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .xb G ) = ( G .x. F ) ) |