Step |
Hyp |
Ref |
Expression |
1 |
|
ply1plusg.y |
|- Y = ( Poly1 ` R ) |
2 |
|
ply1plusg.s |
|- S = ( 1o mPoly R ) |
3 |
|
ply1plusg.p |
|- .+ = ( +g ` Y ) |
4 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
5 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
6 |
2 4 5
|
mplplusg |
|- ( +g ` S ) = ( +g ` ( 1o mPwSer R ) ) |
7 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
8 |
|
eqid |
|- ( +g ` ( PwSer1 ` R ) ) = ( +g ` ( PwSer1 ` R ) ) |
9 |
7 4 8
|
psr1plusg |
|- ( +g ` ( PwSer1 ` R ) ) = ( +g ` ( 1o mPwSer R ) ) |
10 |
|
fvex |
|- ( Base ` ( 1o mPoly R ) ) e. _V |
11 |
1 7
|
ply1val |
|- Y = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
12 |
11 8
|
ressplusg |
|- ( ( Base ` ( 1o mPoly R ) ) e. _V -> ( +g ` ( PwSer1 ` R ) ) = ( +g ` Y ) ) |
13 |
10 12
|
ax-mp |
|- ( +g ` ( PwSer1 ` R ) ) = ( +g ` Y ) |
14 |
6 9 13
|
3eqtr2i |
|- ( +g ` S ) = ( +g ` Y ) |
15 |
3 14
|
eqtr4i |
|- .+ = ( +g ` S ) |