Step |
Hyp |
Ref |
Expression |
1 |
|
ply1ring.p |
|- P = ( Poly1 ` R ) |
2 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
3 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
4 |
1 2 3
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
5 |
1 2 3
|
ply1subrg |
|- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
6 |
4 5
|
eqeltrrid |
|- ( R e. Ring -> ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
7 |
1 2
|
ply1val |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
8 |
7
|
subrgring |
|- ( ( Base ` ( 1o mPoly R ) ) e. ( SubRing ` ( PwSer1 ` R ) ) -> P e. Ring ) |
9 |
6 8
|
syl |
|- ( R e. Ring -> P e. Ring ) |