Step |
Hyp |
Ref |
Expression |
1 |
|
ply1lmod.p |
|- P = ( Poly1 ` R ) |
2 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
3 |
2
|
psr1sca |
|- ( R e. V -> R = ( Scalar ` ( PwSer1 ` R ) ) ) |
4 |
|
fvex |
|- ( Base ` ( 1o mPoly R ) ) e. _V |
5 |
1 2
|
ply1val |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
6 |
|
eqid |
|- ( Scalar ` ( PwSer1 ` R ) ) = ( Scalar ` ( PwSer1 ` R ) ) |
7 |
5 6
|
resssca |
|- ( ( Base ` ( 1o mPoly R ) ) e. _V -> ( Scalar ` ( PwSer1 ` R ) ) = ( Scalar ` P ) ) |
8 |
4 7
|
ax-mp |
|- ( Scalar ` ( PwSer1 ` R ) ) = ( Scalar ` P ) |
9 |
3 8
|
eqtrdi |
|- ( R e. V -> R = ( Scalar ` P ) ) |