Metamath Proof Explorer


Theorem ply1scl0

Description: The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scl.p
|- P = ( Poly1 ` R )
ply1scl.a
|- A = ( algSc ` P )
ply1scl0.z
|- .0. = ( 0g ` R )
ply1scl0.y
|- Y = ( 0g ` P )
Assertion ply1scl0
|- ( R e. Ring -> ( A ` .0. ) = Y )

Proof

Step Hyp Ref Expression
1 ply1scl.p
 |-  P = ( Poly1 ` R )
2 ply1scl.a
 |-  A = ( algSc ` P )
3 ply1scl0.z
 |-  .0. = ( 0g ` R )
4 ply1scl0.y
 |-  Y = ( 0g ` P )
5 1 ply1sca
 |-  ( R e. Ring -> R = ( Scalar ` P ) )
6 5 fveq2d
 |-  ( R e. Ring -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) )
7 3 6 eqtrid
 |-  ( R e. Ring -> .0. = ( 0g ` ( Scalar ` P ) ) )
8 7 fveq2d
 |-  ( R e. Ring -> ( A ` .0. ) = ( A ` ( 0g ` ( Scalar ` P ) ) ) )
9 eqid
 |-  ( Scalar ` P ) = ( Scalar ` P )
10 1 ply1lmod
 |-  ( R e. Ring -> P e. LMod )
11 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
12 2 9 10 11 ascl0
 |-  ( R e. Ring -> ( A ` ( 0g ` ( Scalar ` P ) ) ) = ( 0g ` P ) )
13 8 12 eqtrd
 |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) )
14 13 4 eqtr4di
 |-  ( R e. Ring -> ( A ` .0. ) = Y )