| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1scl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | ply1scl0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | ply1scl0.y |  |-  Y = ( 0g ` P ) | 
						
							| 5 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( R e. Ring -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 7 | 3 6 | eqtrid |  |-  ( R e. Ring -> .0. = ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( R e. Ring -> ( A ` .0. ) = ( A ` ( 0g ` ( Scalar ` P ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 10 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 11 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 12 | 2 9 10 11 | ascl0 |  |-  ( R e. Ring -> ( A ` ( 0g ` ( Scalar ` P ) ) ) = ( 0g ` P ) ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) | 
						
							| 14 | 13 4 | eqtr4di |  |-  ( R e. Ring -> ( A ` .0. ) = Y ) |