| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1scl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | ply1scl1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | ply1scl1.n |  |-  N = ( 1r ` P ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 | 5 3 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 7 | 1 | ply1sca2 |  |-  ( _I ` R ) = ( Scalar ` P ) | 
						
							| 8 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 9 | 8 5 | strfvi |  |-  ( Base ` R ) = ( Base ` ( _I ` R ) ) | 
						
							| 10 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 11 | 2 7 9 10 4 | asclval |  |-  ( .1. e. ( Base ` R ) -> ( A ` .1. ) = ( .1. ( .s ` P ) N ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( R e. Ring -> ( A ` .1. ) = ( .1. ( .s ` P ) N ) ) | 
						
							| 13 |  | fvi |  |-  ( R e. Ring -> ( _I ` R ) = R ) | 
						
							| 14 | 13 | fveq2d |  |-  ( R e. Ring -> ( 1r ` ( _I ` R ) ) = ( 1r ` R ) ) | 
						
							| 15 | 14 3 | eqtr4di |  |-  ( R e. Ring -> ( 1r ` ( _I ` R ) ) = .1. ) | 
						
							| 16 | 15 | oveq1d |  |-  ( R e. Ring -> ( ( 1r ` ( _I ` R ) ) ( .s ` P ) N ) = ( .1. ( .s ` P ) N ) ) | 
						
							| 17 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 18 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 19 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 20 | 19 4 | ringidcl |  |-  ( P e. Ring -> N e. ( Base ` P ) ) | 
						
							| 21 | 18 20 | syl |  |-  ( R e. Ring -> N e. ( Base ` P ) ) | 
						
							| 22 |  | eqid |  |-  ( 1r ` ( _I ` R ) ) = ( 1r ` ( _I ` R ) ) | 
						
							| 23 | 19 7 10 22 | lmodvs1 |  |-  ( ( P e. LMod /\ N e. ( Base ` P ) ) -> ( ( 1r ` ( _I ` R ) ) ( .s ` P ) N ) = N ) | 
						
							| 24 | 17 21 23 | syl2anc |  |-  ( R e. Ring -> ( ( 1r ` ( _I ` R ) ) ( .s ` P ) N ) = N ) | 
						
							| 25 | 12 16 24 | 3eqtr2d |  |-  ( R e. Ring -> ( A ` .1. ) = N ) |