Description: The value of the algebra scalars function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
ply1scl.a | |- A = ( algSc ` P ) |
||
coe1scl.k | |- K = ( Base ` R ) |
||
ply1sclf.b | |- B = ( Base ` P ) |
||
Assertion | ply1sclcl | |- ( ( R e. Ring /\ S e. K ) -> ( A ` S ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
2 | ply1scl.a | |- A = ( algSc ` P ) |
|
3 | coe1scl.k | |- K = ( Base ` R ) |
|
4 | ply1sclf.b | |- B = ( Base ` P ) |
|
5 | 1 2 3 4 | ply1sclf | |- ( R e. Ring -> A : K --> B ) |
6 | 5 | ffvelrnda | |- ( ( R e. Ring /\ S e. K ) -> ( A ` S ) e. B ) |