Metamath Proof Explorer


Theorem ply1sclcl

Description: The value of the algebra scalars function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses ply1scl.p
|- P = ( Poly1 ` R )
ply1scl.a
|- A = ( algSc ` P )
coe1scl.k
|- K = ( Base ` R )
ply1sclf.b
|- B = ( Base ` P )
Assertion ply1sclcl
|- ( ( R e. Ring /\ S e. K ) -> ( A ` S ) e. B )

Proof

Step Hyp Ref Expression
1 ply1scl.p
 |-  P = ( Poly1 ` R )
2 ply1scl.a
 |-  A = ( algSc ` P )
3 coe1scl.k
 |-  K = ( Base ` R )
4 ply1sclf.b
 |-  B = ( Base ` P )
5 1 2 3 4 ply1sclf
 |-  ( R e. Ring -> A : K --> B )
6 5 ffvelrnda
 |-  ( ( R e. Ring /\ S e. K ) -> ( A ` S ) e. B )