Description: A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) | |
| ply1scl.a | |- A = ( algSc ` P ) | ||
| coe1scl.k | |- K = ( Base ` R ) | ||
| ply1sclf.b | |- B = ( Base ` P ) | ||
| Assertion | ply1sclf | |- ( R e. Ring -> A : K --> B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) | |
| 2 | ply1scl.a | |- A = ( algSc ` P ) | |
| 3 | coe1scl.k | |- K = ( Base ` R ) | |
| 4 | ply1sclf.b | |- B = ( Base ` P ) | |
| 5 | 1 | ply1sca2 | |- ( _I ` R ) = ( Scalar ` P ) | 
| 6 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) | 
| 7 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) | 
| 8 | baseid | |- Base = Slot ( Base ` ndx ) | |
| 9 | 8 3 | strfvi | |- K = ( Base ` ( _I ` R ) ) | 
| 10 | 2 5 6 7 9 4 | asclf | |- ( R e. Ring -> A : K --> B ) |