| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1scl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | ply1sclid.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | ply1sclf1.b |  |-  B = ( Base ` P ) | 
						
							| 5 | 1 2 3 4 | ply1sclf |  |-  ( R e. Ring -> A : K --> B ) | 
						
							| 6 |  | fveq2 |  |-  ( ( A ` x ) = ( A ` y ) -> ( coe1 ` ( A ` x ) ) = ( coe1 ` ( A ` y ) ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( ( A ` x ) = ( A ` y ) -> ( ( coe1 ` ( A ` x ) ) ` 0 ) = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) | 
						
							| 8 | 1 2 3 | ply1sclid |  |-  ( ( R e. Ring /\ x e. K ) -> x = ( ( coe1 ` ( A ` x ) ) ` 0 ) ) | 
						
							| 9 | 8 | adantrr |  |-  ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> x = ( ( coe1 ` ( A ` x ) ) ` 0 ) ) | 
						
							| 10 | 1 2 3 | ply1sclid |  |-  ( ( R e. Ring /\ y e. K ) -> y = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) | 
						
							| 11 | 10 | adantrl |  |-  ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> y = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( x = y <-> ( ( coe1 ` ( A ` x ) ) ` 0 ) = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) ) | 
						
							| 13 | 7 12 | imbitrrid |  |-  ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( ( A ` x ) = ( A ` y ) -> x = y ) ) | 
						
							| 14 | 13 | ralrimivva |  |-  ( R e. Ring -> A. x e. K A. y e. K ( ( A ` x ) = ( A ` y ) -> x = y ) ) | 
						
							| 15 |  | dff13 |  |-  ( A : K -1-1-> B <-> ( A : K --> B /\ A. x e. K A. y e. K ( ( A ` x ) = ( A ` y ) -> x = y ) ) ) | 
						
							| 16 | 5 14 15 | sylanbrc |  |-  ( R e. Ring -> A : K -1-1-> B ) |