Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1scl.a |
|- A = ( algSc ` P ) |
3 |
|
ply1sclid.k |
|- K = ( Base ` R ) |
4 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
5 |
1 2 3 4
|
coe1scl |
|- ( ( R e. Ring /\ X e. K ) -> ( coe1 ` ( A ` X ) ) = ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ) |
6 |
5
|
fveq1d |
|- ( ( R e. Ring /\ X e. K ) -> ( ( coe1 ` ( A ` X ) ) ` 0 ) = ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) ) |
7 |
|
0nn0 |
|- 0 e. NN0 |
8 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , X , ( 0g ` R ) ) = X ) |
9 |
|
eqid |
|- ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) = ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) |
10 |
8 9
|
fvmptg |
|- ( ( 0 e. NN0 /\ X e. K ) -> ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) = X ) |
11 |
7 10
|
mpan |
|- ( X e. K -> ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) = X ) |
12 |
11
|
adantl |
|- ( ( R e. Ring /\ X e. K ) -> ( ( x e. NN0 |-> if ( x = 0 , X , ( 0g ` R ) ) ) ` 0 ) = X ) |
13 |
6 12
|
eqtr2d |
|- ( ( R e. Ring /\ X e. K ) -> X = ( ( coe1 ` ( A ` X ) ) ` 0 ) ) |