| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1scl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1scl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | ply1scl0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | ply1scl0.y |  |-  Y = ( 0g ` P ) | 
						
							| 5 |  | ply1scln0.k |  |-  K = ( Base ` R ) | 
						
							| 6 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 7 | 1 2 5 6 | ply1sclf1 |  |-  ( R e. Ring -> A : K -1-1-> ( Base ` P ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( R e. Ring /\ X e. K ) -> A : K -1-1-> ( Base ` P ) ) | 
						
							| 9 |  | simpr |  |-  ( ( R e. Ring /\ X e. K ) -> X e. K ) | 
						
							| 10 | 5 3 | ring0cl |  |-  ( R e. Ring -> .0. e. K ) | 
						
							| 11 | 10 | adantr |  |-  ( ( R e. Ring /\ X e. K ) -> .0. e. K ) | 
						
							| 12 |  | f1fveq |  |-  ( ( A : K -1-1-> ( Base ` P ) /\ ( X e. K /\ .0. e. K ) ) -> ( ( A ` X ) = ( A ` .0. ) <-> X = .0. ) ) | 
						
							| 13 | 8 9 11 12 | syl12anc |  |-  ( ( R e. Ring /\ X e. K ) -> ( ( A ` X ) = ( A ` .0. ) <-> X = .0. ) ) | 
						
							| 14 | 13 | biimpd |  |-  ( ( R e. Ring /\ X e. K ) -> ( ( A ` X ) = ( A ` .0. ) -> X = .0. ) ) | 
						
							| 15 | 14 | necon3d |  |-  ( ( R e. Ring /\ X e. K ) -> ( X =/= .0. -> ( A ` X ) =/= ( A ` .0. ) ) ) | 
						
							| 16 | 15 | 3impia |  |-  ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` X ) =/= ( A ` .0. ) ) | 
						
							| 17 | 1 2 3 4 | ply1scl0 |  |-  ( R e. Ring -> ( A ` .0. ) = Y ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` .0. ) = Y ) | 
						
							| 19 | 16 18 | neeqtrd |  |-  ( ( R e. Ring /\ X e. K /\ X =/= .0. ) -> ( A ` X ) =/= Y ) |