Step |
Hyp |
Ref |
Expression |
1 |
|
ply1val.1 |
|- P = ( Poly1 ` R ) |
2 |
|
ply1val.2 |
|- S = ( PwSer1 ` R ) |
3 |
|
ply1bas.u |
|- U = ( Base ` P ) |
4 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
5 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
6 |
1 2 3
|
ply1bas |
|- U = ( Base ` ( 1o mPoly R ) ) |
7 |
|
1on |
|- 1o e. On |
8 |
7
|
a1i |
|- ( R e. Ring -> 1o e. On ) |
9 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
10 |
4 5 6 8 9
|
mplsubrg |
|- ( R e. Ring -> U e. ( SubRing ` ( 1o mPwSer R ) ) ) |
11 |
|
eqidd |
|- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) ) |
12 |
2
|
psr1val |
|- S = ( ( 1o ordPwSer R ) ` (/) ) |
13 |
|
0ss |
|- (/) C_ ( 1o X. 1o ) |
14 |
13
|
a1i |
|- ( R e. Ring -> (/) C_ ( 1o X. 1o ) ) |
15 |
4 12 14
|
opsrbas |
|- ( R e. Ring -> ( Base ` ( 1o mPwSer R ) ) = ( Base ` S ) ) |
16 |
4 12 14
|
opsrplusg |
|- ( R e. Ring -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` S ) ) |
17 |
16
|
oveqdr |
|- ( ( R e. Ring /\ ( x e. ( Base ` ( 1o mPwSer R ) ) /\ y e. ( Base ` ( 1o mPwSer R ) ) ) ) -> ( x ( +g ` ( 1o mPwSer R ) ) y ) = ( x ( +g ` S ) y ) ) |
18 |
4 12 14
|
opsrmulr |
|- ( R e. Ring -> ( .r ` ( 1o mPwSer R ) ) = ( .r ` S ) ) |
19 |
18
|
oveqdr |
|- ( ( R e. Ring /\ ( x e. ( Base ` ( 1o mPwSer R ) ) /\ y e. ( Base ` ( 1o mPwSer R ) ) ) ) -> ( x ( .r ` ( 1o mPwSer R ) ) y ) = ( x ( .r ` S ) y ) ) |
20 |
11 15 17 19
|
subrgpropd |
|- ( R e. Ring -> ( SubRing ` ( 1o mPwSer R ) ) = ( SubRing ` S ) ) |
21 |
10 20
|
eleqtrd |
|- ( R e. Ring -> U e. ( SubRing ` S ) ) |