Step |
Hyp |
Ref |
Expression |
1 |
|
ply1asclunit.1 |
|- P = ( Poly1 ` F ) |
2 |
|
ply1asclunit.2 |
|- A = ( algSc ` P ) |
3 |
|
ply1asclunit.3 |
|- B = ( Base ` F ) |
4 |
|
ply1asclunit.4 |
|- .0. = ( 0g ` F ) |
5 |
|
ply1asclunit.5 |
|- ( ph -> F e. Field ) |
6 |
|
ply1unit.d |
|- D = ( deg1 ` F ) |
7 |
|
ply1unit.f |
|- ( ph -> C e. ( Base ` P ) ) |
8 |
5
|
fldcrngd |
|- ( ph -> F e. CRing ) |
9 |
8
|
crngringd |
|- ( ph -> F e. Ring ) |
10 |
9
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> F e. Ring ) |
11 |
1
|
ply1ring |
|- ( F e. Ring -> P e. Ring ) |
12 |
9 11
|
syl |
|- ( ph -> P e. Ring ) |
13 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
14 |
|
eqid |
|- ( invr ` P ) = ( invr ` P ) |
15 |
13 14
|
unitinvcl |
|- ( ( P e. Ring /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) e. ( Unit ` P ) ) |
16 |
12 15
|
sylan |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) e. ( Unit ` P ) ) |
17 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
18 |
17 13
|
unitcl |
|- ( ( ( invr ` P ) ` C ) e. ( Unit ` P ) -> ( ( invr ` P ) ` C ) e. ( Base ` P ) ) |
19 |
16 18
|
syl |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) e. ( Base ` P ) ) |
20 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
21 |
5
|
flddrngd |
|- ( ph -> F e. DivRing ) |
22 |
|
drngnzr |
|- ( F e. DivRing -> F e. NzRing ) |
23 |
1
|
ply1nz |
|- ( F e. NzRing -> P e. NzRing ) |
24 |
21 22 23
|
3syl |
|- ( ph -> P e. NzRing ) |
25 |
24
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> P e. NzRing ) |
26 |
13 20 25 16
|
unitnz |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( invr ` P ) ` C ) =/= ( 0g ` P ) ) |
27 |
6 1 20 17
|
deg1nn0cl |
|- ( ( F e. Ring /\ ( ( invr ` P ) ` C ) e. ( Base ` P ) /\ ( ( invr ` P ) ` C ) =/= ( 0g ` P ) ) -> ( D ` ( ( invr ` P ) ` C ) ) e. NN0 ) |
28 |
10 19 26 27
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( invr ` P ) ` C ) ) e. NN0 ) |
29 |
28
|
nn0red |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( invr ` P ) ` C ) ) e. RR ) |
30 |
28
|
nn0ge0d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) |
31 |
29 30
|
jca |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) ) |
32 |
7
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> C e. ( Base ` P ) ) |
33 |
|
simpr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> C e. ( Unit ` P ) ) |
34 |
13 20 25 33
|
unitnz |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> C =/= ( 0g ` P ) ) |
35 |
6 1 20 17
|
deg1nn0cl |
|- ( ( F e. Ring /\ C e. ( Base ` P ) /\ C =/= ( 0g ` P ) ) -> ( D ` C ) e. NN0 ) |
36 |
10 32 34 35
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` C ) e. NN0 ) |
37 |
36
|
nn0red |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` C ) e. RR ) |
38 |
36
|
nn0ge0d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> 0 <_ ( D ` C ) ) |
39 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
40 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
41 |
13 14 39 40
|
unitlinv |
|- ( ( P e. Ring /\ C e. ( Unit ` P ) ) -> ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) = ( 1r ` P ) ) |
42 |
12 41
|
sylan |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) = ( 1r ` P ) ) |
43 |
42
|
fveq2d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) ) = ( D ` ( 1r ` P ) ) ) |
44 |
|
eqid |
|- ( RLReg ` F ) = ( RLReg ` F ) |
45 |
|
drngdomn |
|- ( F e. DivRing -> F e. Domn ) |
46 |
21 45
|
syl |
|- ( ph -> F e. Domn ) |
47 |
46
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> F e. Domn ) |
48 |
|
eqid |
|- ( coe1 ` ( ( invr ` P ) ` C ) ) = ( coe1 ` ( ( invr ` P ) ` C ) ) |
49 |
48 17 1 3
|
coe1fvalcl |
|- ( ( ( ( invr ` P ) ` C ) e. ( Base ` P ) /\ ( D ` ( ( invr ` P ) ` C ) ) e. NN0 ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. B ) |
50 |
19 28 49
|
syl2anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. B ) |
51 |
6 1 20 17 4 48
|
deg1ldg |
|- ( ( F e. Ring /\ ( ( invr ` P ) ` C ) e. ( Base ` P ) /\ ( ( invr ` P ) ` C ) =/= ( 0g ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) =/= .0. ) |
52 |
10 19 26 51
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) =/= .0. ) |
53 |
3 44 4
|
domnrrg |
|- ( ( F e. Domn /\ ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. B /\ ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) =/= .0. ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. ( RLReg ` F ) ) |
54 |
47 50 52 53
|
syl3anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( coe1 ` ( ( invr ` P ) ` C ) ) ` ( D ` ( ( invr ` P ) ` C ) ) ) e. ( RLReg ` F ) ) |
55 |
6 1 44 17 39 20 10 19 26 54 32 34
|
deg1mul2 |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( ( ( invr ` P ) ` C ) ( .r ` P ) C ) ) = ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) ) |
56 |
|
eqid |
|- ( Monic1p ` F ) = ( Monic1p ` F ) |
57 |
1 40 56 6
|
mon1pid |
|- ( F e. NzRing -> ( ( 1r ` P ) e. ( Monic1p ` F ) /\ ( D ` ( 1r ` P ) ) = 0 ) ) |
58 |
57
|
simprd |
|- ( F e. NzRing -> ( D ` ( 1r ` P ) ) = 0 ) |
59 |
21 22 58
|
3syl |
|- ( ph -> ( D ` ( 1r ` P ) ) = 0 ) |
60 |
59
|
adantr |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` ( 1r ` P ) ) = 0 ) |
61 |
43 55 60
|
3eqtr3d |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 ) |
62 |
|
add20 |
|- ( ( ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) /\ ( ( D ` C ) e. RR /\ 0 <_ ( D ` C ) ) ) -> ( ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 <-> ( ( D ` ( ( invr ` P ) ` C ) ) = 0 /\ ( D ` C ) = 0 ) ) ) |
63 |
62
|
anassrs |
|- ( ( ( ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) /\ ( D ` C ) e. RR ) /\ 0 <_ ( D ` C ) ) -> ( ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 <-> ( ( D ` ( ( invr ` P ) ` C ) ) = 0 /\ ( D ` C ) = 0 ) ) ) |
64 |
63
|
simplbda |
|- ( ( ( ( ( ( D ` ( ( invr ` P ) ` C ) ) e. RR /\ 0 <_ ( D ` ( ( invr ` P ) ` C ) ) ) /\ ( D ` C ) e. RR ) /\ 0 <_ ( D ` C ) ) /\ ( ( D ` ( ( invr ` P ) ` C ) ) + ( D ` C ) ) = 0 ) -> ( D ` C ) = 0 ) |
65 |
31 37 38 61 64
|
syl1111anc |
|- ( ( ph /\ C e. ( Unit ` P ) ) -> ( D ` C ) = 0 ) |
66 |
9
|
adantr |
|- ( ( ph /\ ( D ` C ) = 0 ) -> F e. Ring ) |
67 |
7
|
adantr |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C e. ( Base ` P ) ) |
68 |
6 1 17
|
deg1xrcl |
|- ( C e. ( Base ` P ) -> ( D ` C ) e. RR* ) |
69 |
7 68
|
syl |
|- ( ph -> ( D ` C ) e. RR* ) |
70 |
|
0xr |
|- 0 e. RR* |
71 |
|
xeqlelt |
|- ( ( ( D ` C ) e. RR* /\ 0 e. RR* ) -> ( ( D ` C ) = 0 <-> ( ( D ` C ) <_ 0 /\ -. ( D ` C ) < 0 ) ) ) |
72 |
69 70 71
|
sylancl |
|- ( ph -> ( ( D ` C ) = 0 <-> ( ( D ` C ) <_ 0 /\ -. ( D ` C ) < 0 ) ) ) |
73 |
72
|
simprbda |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( D ` C ) <_ 0 ) |
74 |
6 1 17 2
|
deg1le0 |
|- ( ( F e. Ring /\ C e. ( Base ` P ) ) -> ( ( D ` C ) <_ 0 <-> C = ( A ` ( ( coe1 ` C ) ` 0 ) ) ) ) |
75 |
74
|
biimpa |
|- ( ( ( F e. Ring /\ C e. ( Base ` P ) ) /\ ( D ` C ) <_ 0 ) -> C = ( A ` ( ( coe1 ` C ) ` 0 ) ) ) |
76 |
66 67 73 75
|
syl21anc |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C = ( A ` ( ( coe1 ` C ) ` 0 ) ) ) |
77 |
5
|
adantr |
|- ( ( ph /\ ( D ` C ) = 0 ) -> F e. Field ) |
78 |
|
0nn0 |
|- 0 e. NN0 |
79 |
|
eqid |
|- ( coe1 ` C ) = ( coe1 ` C ) |
80 |
79 17 1 3
|
coe1fvalcl |
|- ( ( C e. ( Base ` P ) /\ 0 e. NN0 ) -> ( ( coe1 ` C ) ` 0 ) e. B ) |
81 |
67 78 80
|
sylancl |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( ( coe1 ` C ) ` 0 ) e. B ) |
82 |
|
simpl |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ph ) |
83 |
72
|
simplbda |
|- ( ( ph /\ ( D ` C ) = 0 ) -> -. ( D ` C ) < 0 ) |
84 |
6 1 20 17
|
deg1lt0 |
|- ( ( F e. Ring /\ C e. ( Base ` P ) ) -> ( ( D ` C ) < 0 <-> C = ( 0g ` P ) ) ) |
85 |
84
|
necon3bbid |
|- ( ( F e. Ring /\ C e. ( Base ` P ) ) -> ( -. ( D ` C ) < 0 <-> C =/= ( 0g ` P ) ) ) |
86 |
85
|
biimpa |
|- ( ( ( F e. Ring /\ C e. ( Base ` P ) ) /\ -. ( D ` C ) < 0 ) -> C =/= ( 0g ` P ) ) |
87 |
66 67 83 86
|
syl21anc |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C =/= ( 0g ` P ) ) |
88 |
9
|
adantr |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> F e. Ring ) |
89 |
7
|
adantr |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> C e. ( Base ` P ) ) |
90 |
|
simpr |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> ( D ` C ) <_ 0 ) |
91 |
6 1 4 17 20 88 89 90
|
deg1le0eq0 |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> ( C = ( 0g ` P ) <-> ( ( coe1 ` C ) ` 0 ) = .0. ) ) |
92 |
91
|
necon3bid |
|- ( ( ph /\ ( D ` C ) <_ 0 ) -> ( C =/= ( 0g ` P ) <-> ( ( coe1 ` C ) ` 0 ) =/= .0. ) ) |
93 |
92
|
biimpa |
|- ( ( ( ph /\ ( D ` C ) <_ 0 ) /\ C =/= ( 0g ` P ) ) -> ( ( coe1 ` C ) ` 0 ) =/= .0. ) |
94 |
82 73 87 93
|
syl21anc |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( ( coe1 ` C ) ` 0 ) =/= .0. ) |
95 |
1 2 3 4 77 81 94
|
ply1asclunit |
|- ( ( ph /\ ( D ` C ) = 0 ) -> ( A ` ( ( coe1 ` C ) ` 0 ) ) e. ( Unit ` P ) ) |
96 |
76 95
|
eqeltrd |
|- ( ( ph /\ ( D ` C ) = 0 ) -> C e. ( Unit ` P ) ) |
97 |
65 96
|
impbida |
|- ( ph -> ( C e. ( Unit ` P ) <-> ( D ` C ) = 0 ) ) |