Step |
Hyp |
Ref |
Expression |
1 |
|
ply1val.1 |
|- P = ( Poly1 ` R ) |
2 |
|
ply1val.2 |
|- S = ( PwSer1 ` R ) |
3 |
|
fveq2 |
|- ( r = R -> ( PwSer1 ` r ) = ( PwSer1 ` R ) ) |
4 |
3 2
|
eqtr4di |
|- ( r = R -> ( PwSer1 ` r ) = S ) |
5 |
|
oveq2 |
|- ( r = R -> ( 1o mPoly r ) = ( 1o mPoly R ) ) |
6 |
5
|
fveq2d |
|- ( r = R -> ( Base ` ( 1o mPoly r ) ) = ( Base ` ( 1o mPoly R ) ) ) |
7 |
4 6
|
oveq12d |
|- ( r = R -> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) ) |
8 |
|
df-ply1 |
|- Poly1 = ( r e. _V |-> ( ( PwSer1 ` r ) |`s ( Base ` ( 1o mPoly r ) ) ) ) |
9 |
|
ovex |
|- ( S |`s ( Base ` ( 1o mPoly R ) ) ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( R e. _V -> ( Poly1 ` R ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) ) |
11 |
|
fvprc |
|- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
12 |
|
ress0 |
|- ( (/) |`s ( Base ` ( 1o mPoly R ) ) ) = (/) |
13 |
11 12
|
eqtr4di |
|- ( -. R e. _V -> ( Poly1 ` R ) = ( (/) |`s ( Base ` ( 1o mPoly R ) ) ) ) |
14 |
|
fvprc |
|- ( -. R e. _V -> ( PwSer1 ` R ) = (/) ) |
15 |
2 14
|
eqtrid |
|- ( -. R e. _V -> S = (/) ) |
16 |
15
|
oveq1d |
|- ( -. R e. _V -> ( S |`s ( Base ` ( 1o mPoly R ) ) ) = ( (/) |`s ( Base ` ( 1o mPoly R ) ) ) ) |
17 |
13 16
|
eqtr4d |
|- ( -. R e. _V -> ( Poly1 ` R ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) ) |
18 |
10 17
|
pm2.61i |
|- ( Poly1 ` R ) = ( S |`s ( Base ` ( 1o mPoly R ) ) ) |
19 |
1 18
|
eqtri |
|- P = ( S |`s ( Base ` ( 1o mPoly R ) ) ) |