Metamath Proof Explorer


Theorem ply1vscl

Description: Closure of scalar multiplication for univariate polynomials. (Contributed by SN, 20-May-2025)

Ref Expression
Hypotheses ply1vscl.p
|- P = ( Poly1 ` R )
ply1vscl.b
|- B = ( Base ` P )
ply1vscl.k
|- K = ( Base ` R )
ply1vscl.s
|- .x. = ( .s ` P )
ply1vscl.r
|- ( ph -> R e. Ring )
ply1vscl.c
|- ( ph -> C e. K )
ply1vscl.x
|- ( ph -> X e. B )
Assertion ply1vscl
|- ( ph -> ( C .x. X ) e. B )

Proof

Step Hyp Ref Expression
1 ply1vscl.p
 |-  P = ( Poly1 ` R )
2 ply1vscl.b
 |-  B = ( Base ` P )
3 ply1vscl.k
 |-  K = ( Base ` R )
4 ply1vscl.s
 |-  .x. = ( .s ` P )
5 ply1vscl.r
 |-  ( ph -> R e. Ring )
6 ply1vscl.c
 |-  ( ph -> C e. K )
7 ply1vscl.x
 |-  ( ph -> X e. B )
8 1 2 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
9 eqid
 |-  ( Scalar ` ( 1o mPoly R ) ) = ( Scalar ` ( 1o mPoly R ) )
10 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
11 1 10 4 ply1vsca
 |-  .x. = ( .s ` ( 1o mPoly R ) )
12 eqid
 |-  ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) = ( Base ` ( Scalar ` ( 1o mPoly R ) ) )
13 1oex
 |-  1o e. _V
14 13 a1i
 |-  ( ph -> 1o e. _V )
15 10 14 5 mpllmodd
 |-  ( ph -> ( 1o mPoly R ) e. LMod )
16 10 14 5 mplsca
 |-  ( ph -> R = ( Scalar ` ( 1o mPoly R ) ) )
17 16 fveq2d
 |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) )
18 3 17 eqtrid
 |-  ( ph -> K = ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) )
19 6 18 eleqtrd
 |-  ( ph -> C e. ( Base ` ( Scalar ` ( 1o mPoly R ) ) ) )
20 8 9 11 12 15 19 7 lmodvscld
 |-  ( ph -> ( C .x. X ) e. B )