Metamath Proof Explorer


Theorem plybss

Description: Reverse closure of the parameter S of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion plybss
|- ( F e. ( Poly ` S ) -> S C_ CC )

Proof

Step Hyp Ref Expression
1 df-ply
 |-  Poly = ( x e. ~P CC |-> { f | E. n e. NN0 E. a e. ( ( x u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) } )
2 1 mptrcl
 |-  ( F e. ( Poly ` S ) -> S e. ~P CC )
3 2 elpwid
 |-  ( F e. ( Poly ` S ) -> S C_ CC )