| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plycj.2 |  |-  G = ( ( * o. F ) o. * ) | 
						
							| 2 |  | plycj.3 |  |-  ( ( ph /\ x e. S ) -> ( * ` x ) e. S ) | 
						
							| 3 |  | plycj.4 |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 4 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 5 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 6 | 4 1 5 | plycjlem |  |-  ( F e. ( Poly ` S ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( * o. ( coeff ` F ) ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> G = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( * o. ( coeff ` F ) ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 8 |  | plybss |  |-  ( F e. ( Poly ` S ) -> S C_ CC ) | 
						
							| 9 | 3 8 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 10 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 11 | 10 | snssd |  |-  ( ph -> { 0 } C_ CC ) | 
						
							| 12 | 9 11 | unssd |  |-  ( ph -> ( S u. { 0 } ) C_ CC ) | 
						
							| 13 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 15 | 5 | coef |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) | 
						
							| 16 | 3 15 | syl |  |-  ( ph -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) | 
						
							| 17 |  | elfznn0 |  |-  ( k e. ( 0 ... ( deg ` F ) ) -> k e. NN0 ) | 
						
							| 18 |  | fvco3 |  |-  ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( ( * o. ( coeff ` F ) ) ` k ) = ( * ` ( ( coeff ` F ) ` k ) ) ) | 
						
							| 19 | 16 17 18 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( ( * o. ( coeff ` F ) ) ` k ) = ( * ` ( ( coeff ` F ) ` k ) ) ) | 
						
							| 20 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) ) | 
						
							| 21 | 16 17 20 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) ) | 
						
							| 22 | 2 | ralrimiva |  |-  ( ph -> A. x e. S ( * ` x ) e. S ) | 
						
							| 23 |  | fveq2 |  |-  ( x = ( ( coeff ` F ) ` k ) -> ( * ` x ) = ( * ` ( ( coeff ` F ) ` k ) ) ) | 
						
							| 24 | 23 | eleq1d |  |-  ( x = ( ( coeff ` F ) ` k ) -> ( ( * ` x ) e. S <-> ( * ` ( ( coeff ` F ) ` k ) ) e. S ) ) | 
						
							| 25 | 24 | rspccv |  |-  ( A. x e. S ( * ` x ) e. S -> ( ( ( coeff ` F ) ` k ) e. S -> ( * ` ( ( coeff ` F ) ` k ) ) e. S ) ) | 
						
							| 26 | 22 25 | syl |  |-  ( ph -> ( ( ( coeff ` F ) ` k ) e. S -> ( * ` ( ( coeff ` F ) ` k ) ) e. S ) ) | 
						
							| 27 |  | elsni |  |-  ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( ( coeff ` F ) ` k ) = 0 ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) = ( * ` 0 ) ) | 
						
							| 29 |  | cj0 |  |-  ( * ` 0 ) = 0 | 
						
							| 30 | 28 29 | eqtrdi |  |-  ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) = 0 ) | 
						
							| 31 |  | fvex |  |-  ( * ` ( ( coeff ` F ) ` k ) ) e. _V | 
						
							| 32 | 31 | elsn |  |-  ( ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } <-> ( * ` ( ( coeff ` F ) ` k ) ) = 0 ) | 
						
							| 33 | 30 32 | sylibr |  |-  ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) ) | 
						
							| 35 | 26 34 | orim12d |  |-  ( ph -> ( ( ( ( coeff ` F ) ` k ) e. S \/ ( ( coeff ` F ) ` k ) e. { 0 } ) -> ( ( * ` ( ( coeff ` F ) ` k ) ) e. S \/ ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) ) ) | 
						
							| 36 |  | elun |  |-  ( ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) <-> ( ( ( coeff ` F ) ` k ) e. S \/ ( ( coeff ` F ) ` k ) e. { 0 } ) ) | 
						
							| 37 |  | elun |  |-  ( ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) <-> ( ( * ` ( ( coeff ` F ) ` k ) ) e. S \/ ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) ) | 
						
							| 38 | 35 36 37 | 3imtr4g |  |-  ( ph -> ( ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) -> ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) -> ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) ) ) | 
						
							| 40 | 21 39 | mpd |  |-  ( ( ph /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) ) | 
						
							| 41 | 19 40 | eqeltrd |  |-  ( ( ph /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( ( * o. ( coeff ` F ) ) ` k ) e. ( S u. { 0 } ) ) | 
						
							| 42 | 12 14 41 | elplyd |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( * o. ( coeff ` F ) ) ` k ) x. ( z ^ k ) ) ) e. ( Poly ` ( S u. { 0 } ) ) ) | 
						
							| 43 | 7 42 | eqeltrd |  |-  ( ph -> G e. ( Poly ` ( S u. { 0 } ) ) ) | 
						
							| 44 |  | plyun0 |  |-  ( Poly ` ( S u. { 0 } ) ) = ( Poly ` S ) | 
						
							| 45 | 43 44 | eleqtrdi |  |-  ( ph -> G e. ( Poly ` S ) ) |