Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.1 |
|- N = ( deg ` F ) |
2 |
|
plycj.2 |
|- G = ( ( * o. F ) o. * ) |
3 |
|
plycj.3 |
|- ( ( ph /\ x e. S ) -> ( * ` x ) e. S ) |
4 |
|
plycj.4 |
|- ( ph -> F e. ( Poly ` S ) ) |
5 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
6 |
1 2 5
|
plycjlem |
|- ( F e. ( Poly ` S ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. ( coeff ` F ) ) ` k ) x. ( z ^ k ) ) ) ) |
7 |
4 6
|
syl |
|- ( ph -> G = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. ( coeff ` F ) ) ` k ) x. ( z ^ k ) ) ) ) |
8 |
|
plybss |
|- ( F e. ( Poly ` S ) -> S C_ CC ) |
9 |
4 8
|
syl |
|- ( ph -> S C_ CC ) |
10 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
11 |
10
|
snssd |
|- ( ph -> { 0 } C_ CC ) |
12 |
9 11
|
unssd |
|- ( ph -> ( S u. { 0 } ) C_ CC ) |
13 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
14 |
4 13
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
15 |
1 14
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
16 |
5
|
coef |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) |
17 |
4 16
|
syl |
|- ( ph -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) |
18 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
19 |
|
fvco3 |
|- ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( ( * o. ( coeff ` F ) ) ` k ) = ( * ` ( ( coeff ` F ) ` k ) ) ) |
20 |
17 18 19
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( * o. ( coeff ` F ) ) ` k ) = ( * ` ( ( coeff ` F ) ` k ) ) ) |
21 |
|
ffvelrn |
|- ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ k e. NN0 ) -> ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) ) |
22 |
17 18 21
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) ) |
23 |
3
|
ralrimiva |
|- ( ph -> A. x e. S ( * ` x ) e. S ) |
24 |
|
fveq2 |
|- ( x = ( ( coeff ` F ) ` k ) -> ( * ` x ) = ( * ` ( ( coeff ` F ) ` k ) ) ) |
25 |
24
|
eleq1d |
|- ( x = ( ( coeff ` F ) ` k ) -> ( ( * ` x ) e. S <-> ( * ` ( ( coeff ` F ) ` k ) ) e. S ) ) |
26 |
25
|
rspccv |
|- ( A. x e. S ( * ` x ) e. S -> ( ( ( coeff ` F ) ` k ) e. S -> ( * ` ( ( coeff ` F ) ` k ) ) e. S ) ) |
27 |
23 26
|
syl |
|- ( ph -> ( ( ( coeff ` F ) ` k ) e. S -> ( * ` ( ( coeff ` F ) ` k ) ) e. S ) ) |
28 |
|
elsni |
|- ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( ( coeff ` F ) ` k ) = 0 ) |
29 |
28
|
fveq2d |
|- ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) = ( * ` 0 ) ) |
30 |
|
cj0 |
|- ( * ` 0 ) = 0 |
31 |
29 30
|
eqtrdi |
|- ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) = 0 ) |
32 |
|
fvex |
|- ( * ` ( ( coeff ` F ) ` k ) ) e. _V |
33 |
32
|
elsn |
|- ( ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } <-> ( * ` ( ( coeff ` F ) ` k ) ) = 0 ) |
34 |
31 33
|
sylibr |
|- ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) |
35 |
34
|
a1i |
|- ( ph -> ( ( ( coeff ` F ) ` k ) e. { 0 } -> ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) ) |
36 |
27 35
|
orim12d |
|- ( ph -> ( ( ( ( coeff ` F ) ` k ) e. S \/ ( ( coeff ` F ) ` k ) e. { 0 } ) -> ( ( * ` ( ( coeff ` F ) ` k ) ) e. S \/ ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) ) ) |
37 |
|
elun |
|- ( ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) <-> ( ( ( coeff ` F ) ` k ) e. S \/ ( ( coeff ` F ) ` k ) e. { 0 } ) ) |
38 |
|
elun |
|- ( ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) <-> ( ( * ` ( ( coeff ` F ) ` k ) ) e. S \/ ( * ` ( ( coeff ` F ) ` k ) ) e. { 0 } ) ) |
39 |
36 37 38
|
3imtr4g |
|- ( ph -> ( ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) -> ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( coeff ` F ) ` k ) e. ( S u. { 0 } ) -> ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) ) ) |
41 |
22 40
|
mpd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( * ` ( ( coeff ` F ) ` k ) ) e. ( S u. { 0 } ) ) |
42 |
20 41
|
eqeltrd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( * o. ( coeff ` F ) ) ` k ) e. ( S u. { 0 } ) ) |
43 |
12 15 42
|
elplyd |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. ( coeff ` F ) ) ` k ) x. ( z ^ k ) ) ) e. ( Poly ` ( S u. { 0 } ) ) ) |
44 |
7 43
|
eqeltrd |
|- ( ph -> G e. ( Poly ` ( S u. { 0 } ) ) ) |
45 |
|
plyun0 |
|- ( Poly ` ( S u. { 0 } ) ) = ( Poly ` S ) |
46 |
44 45
|
eleqtrdi |
|- ( ph -> G e. ( Poly ` S ) ) |