Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.1 |
|- N = ( deg ` F ) |
2 |
|
plycj.2 |
|- G = ( ( * o. F ) o. * ) |
3 |
|
plycjlem.3 |
|- A = ( coeff ` F ) |
4 |
|
cjcl |
|- ( z e. CC -> ( * ` z ) e. CC ) |
5 |
4
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( * ` z ) e. CC ) |
6 |
|
cjf |
|- * : CC --> CC |
7 |
6
|
a1i |
|- ( F e. ( Poly ` S ) -> * : CC --> CC ) |
8 |
7
|
feqmptd |
|- ( F e. ( Poly ` S ) -> * = ( z e. CC |-> ( * ` z ) ) ) |
9 |
|
fzfid |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( 0 ... N ) e. Fin ) |
10 |
3
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
11 |
10
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> A : NN0 --> CC ) |
12 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
13 |
|
ffvelrn |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
14 |
11 12 13
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
15 |
|
expcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
16 |
12 15
|
sylan2 |
|- ( ( x e. CC /\ k e. ( 0 ... N ) ) -> ( x ^ k ) e. CC ) |
17 |
16
|
adantll |
|- ( ( ( F e. ( Poly ` S ) /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( x ^ k ) e. CC ) |
18 |
14 17
|
mulcld |
|- ( ( ( F e. ( Poly ` S ) /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( x ^ k ) ) e. CC ) |
19 |
9 18
|
fsumcl |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) e. CC ) |
20 |
3 1
|
coeid |
|- ( F e. ( Poly ` S ) -> F = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) ) |
21 |
|
fveq2 |
|- ( z = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) -> ( * ` z ) = ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) ) |
22 |
19 20 8 21
|
fmptco |
|- ( F e. ( Poly ` S ) -> ( * o. F ) = ( x e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) ) ) |
23 |
|
oveq1 |
|- ( x = ( * ` z ) -> ( x ^ k ) = ( ( * ` z ) ^ k ) ) |
24 |
23
|
oveq2d |
|- ( x = ( * ` z ) -> ( ( A ` k ) x. ( x ^ k ) ) = ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) |
25 |
24
|
sumeq2sdv |
|- ( x = ( * ` z ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) |
26 |
25
|
fveq2d |
|- ( x = ( * ` z ) -> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) = ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) |
27 |
5 8 22 26
|
fmptco |
|- ( F e. ( Poly ` S ) -> ( ( * o. F ) o. * ) = ( z e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) ) |
28 |
2 27
|
syl5eq |
|- ( F e. ( Poly ` S ) -> G = ( z e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) ) |
29 |
|
fzfid |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( 0 ... N ) e. Fin ) |
30 |
10
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> A : NN0 --> CC ) |
31 |
30 12 13
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
32 |
|
expcl |
|- ( ( ( * ` z ) e. CC /\ k e. NN0 ) -> ( ( * ` z ) ^ k ) e. CC ) |
33 |
5 12 32
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( * ` z ) ^ k ) e. CC ) |
34 |
31 33
|
mulcld |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) e. CC ) |
35 |
29 34
|
fsumcj |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) |
36 |
31 33
|
cjmuld |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = ( ( * ` ( A ` k ) ) x. ( * ` ( ( * ` z ) ^ k ) ) ) ) |
37 |
|
fvco3 |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( ( * o. A ) ` k ) = ( * ` ( A ` k ) ) ) |
38 |
30 12 37
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( * o. A ) ` k ) = ( * ` ( A ` k ) ) ) |
39 |
|
cjexp |
|- ( ( ( * ` z ) e. CC /\ k e. NN0 ) -> ( * ` ( ( * ` z ) ^ k ) ) = ( ( * ` ( * ` z ) ) ^ k ) ) |
40 |
5 12 39
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( ( * ` z ) ^ k ) ) = ( ( * ` ( * ` z ) ) ^ k ) ) |
41 |
|
cjcj |
|- ( z e. CC -> ( * ` ( * ` z ) ) = z ) |
42 |
41
|
ad2antlr |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( * ` z ) ) = z ) |
43 |
42
|
oveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( * ` ( * ` z ) ) ^ k ) = ( z ^ k ) ) |
44 |
40 43
|
eqtr2d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( z ^ k ) = ( * ` ( ( * ` z ) ^ k ) ) ) |
45 |
38 44
|
oveq12d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) = ( ( * ` ( A ` k ) ) x. ( * ` ( ( * ` z ) ^ k ) ) ) ) |
46 |
36 45
|
eqtr4d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) |
47 |
46
|
sumeq2dv |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) |
48 |
35 47
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) |
49 |
48
|
mpteq2dva |
|- ( F e. ( Poly ` S ) -> ( z e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) ) |
50 |
28 49
|
eqtrd |
|- ( F e. ( Poly ` S ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) ) |