| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 2 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 3 | 1 2 | coeid |  |-  ( F e. ( Poly ` S ) -> F = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 4 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 5 | 4 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 6 | 5 | a1i |  |-  ( F e. ( Poly ` S ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 7 |  | fzfid |  |-  ( F e. ( Poly ` S ) -> ( 0 ... ( deg ` F ) ) e. Fin ) | 
						
							| 8 | 5 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 9 | 1 | coef3 |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 10 |  | elfznn0 |  |-  ( k e. ( 0 ... ( deg ` F ) ) -> k e. NN0 ) | 
						
							| 11 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> CC /\ k e. NN0 ) -> ( ( coeff ` F ) ` k ) e. CC ) | 
						
							| 12 | 9 10 11 | syl2an |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` k ) e. CC ) | 
						
							| 13 | 8 8 12 | cnmptc |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( z e. CC |-> ( ( coeff ` F ) ` k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 14 | 10 | adantl |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> k e. NN0 ) | 
						
							| 15 | 4 | expcn |  |-  ( k e. NN0 -> ( z e. CC |-> ( z ^ k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( z e. CC |-> ( z ^ k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 17 | 4 | mpomulcn |  |-  ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 18 | 17 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 19 |  | oveq12 |  |-  ( ( u = ( ( coeff ` F ) ` k ) /\ v = ( z ^ k ) ) -> ( u x. v ) = ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) | 
						
							| 20 | 8 13 16 8 8 18 19 | cnmpt12 |  |-  ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... ( deg ` F ) ) ) -> ( z e. CC |-> ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 21 | 4 6 7 20 | fsumcn |  |-  ( F e. ( Poly ` S ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( z ^ k ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 22 | 3 21 | eqeltrd |  |-  ( F e. ( Poly ` S ) -> F e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 23 | 4 | cncfcn1 |  |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 24 | 22 23 | eleqtrrdi |  |-  ( F e. ( Poly ` S ) -> F e. ( CC -cn-> CC ) ) |