| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyco.1 |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 2 |  | plyco.2 |  |-  ( ph -> G e. ( Poly ` S ) ) | 
						
							| 3 |  | plyco.3 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 4 |  | plyco.4 |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 5 |  | plyf |  |-  ( G e. ( Poly ` S ) -> G : CC --> CC ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> G : CC --> CC ) | 
						
							| 7 | 6 | ffvelcdmda |  |-  ( ( ph /\ z e. CC ) -> ( G ` z ) e. CC ) | 
						
							| 8 | 6 | feqmptd |  |-  ( ph -> G = ( z e. CC |-> ( G ` z ) ) ) | 
						
							| 9 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 10 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 11 | 9 10 | coeid |  |-  ( F e. ( Poly ` S ) -> F = ( x e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> F = ( x e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = ( G ` z ) -> ( x ^ k ) = ( ( G ` z ) ^ k ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( x = ( G ` z ) -> ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) = ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) | 
						
							| 15 | 14 | sumeq2sdv |  |-  ( x = ( G ` z ) -> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) | 
						
							| 16 | 7 8 12 15 | fmptco |  |-  ( ph -> ( F o. G ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 17 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 18 | 1 17 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 19 |  | oveq2 |  |-  ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) | 
						
							| 20 | 19 | sumeq1d |  |-  ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) | 
						
							| 21 | 20 | mpteq2dv |  |-  ( x = 0 -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( x = 0 -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 23 | 22 | imbi2d |  |-  ( x = 0 -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( x = d -> ( 0 ... x ) = ( 0 ... d ) ) | 
						
							| 25 | 24 | sumeq1d |  |-  ( x = d -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) | 
						
							| 26 | 25 | mpteq2dv |  |-  ( x = d -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( x = d -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( x = d -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 29 |  | oveq2 |  |-  ( x = ( d + 1 ) -> ( 0 ... x ) = ( 0 ... ( d + 1 ) ) ) | 
						
							| 30 | 29 | sumeq1d |  |-  ( x = ( d + 1 ) -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) | 
						
							| 31 | 30 | mpteq2dv |  |-  ( x = ( d + 1 ) -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 32 | 31 | eleq1d |  |-  ( x = ( d + 1 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 33 | 32 | imbi2d |  |-  ( x = ( d + 1 ) -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 34 |  | oveq2 |  |-  ( x = ( deg ` F ) -> ( 0 ... x ) = ( 0 ... ( deg ` F ) ) ) | 
						
							| 35 | 34 | sumeq1d |  |-  ( x = ( deg ` F ) -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) | 
						
							| 36 | 35 | mpteq2dv |  |-  ( x = ( deg ` F ) -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( x = ( deg ` F ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 38 | 37 | imbi2d |  |-  ( x = ( deg ` F ) -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 39 |  | 0z |  |-  0 e. ZZ | 
						
							| 40 | 7 | exp0d |  |-  ( ( ph /\ z e. CC ) -> ( ( G ` z ) ^ 0 ) = 1 ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) = ( ( ( coeff ` F ) ` 0 ) x. 1 ) ) | 
						
							| 42 |  | plybss |  |-  ( F e. ( Poly ` S ) -> S C_ CC ) | 
						
							| 43 | 1 42 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 44 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 45 | 44 | snssd |  |-  ( ph -> { 0 } C_ CC ) | 
						
							| 46 | 43 45 | unssd |  |-  ( ph -> ( S u. { 0 } ) C_ CC ) | 
						
							| 47 | 9 | coef |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) | 
						
							| 48 | 1 47 | syl |  |-  ( ph -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) | 
						
							| 49 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 50 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ 0 e. NN0 ) -> ( ( coeff ` F ) ` 0 ) e. ( S u. { 0 } ) ) | 
						
							| 51 | 48 49 50 | sylancl |  |-  ( ph -> ( ( coeff ` F ) ` 0 ) e. ( S u. { 0 } ) ) | 
						
							| 52 | 46 51 | sseldd |  |-  ( ph -> ( ( coeff ` F ) ` 0 ) e. CC ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ z e. CC ) -> ( ( coeff ` F ) ` 0 ) e. CC ) | 
						
							| 54 | 53 | mulridd |  |-  ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. 1 ) = ( ( coeff ` F ) ` 0 ) ) | 
						
							| 55 | 41 54 | eqtrd |  |-  ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) = ( ( coeff ` F ) ` 0 ) ) | 
						
							| 56 | 55 53 | eqeltrd |  |-  ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) e. CC ) | 
						
							| 57 |  | fveq2 |  |-  ( k = 0 -> ( ( coeff ` F ) ` k ) = ( ( coeff ` F ) ` 0 ) ) | 
						
							| 58 |  | oveq2 |  |-  ( k = 0 -> ( ( G ` z ) ^ k ) = ( ( G ` z ) ^ 0 ) ) | 
						
							| 59 | 57 58 | oveq12d |  |-  ( k = 0 -> ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) ) | 
						
							| 60 | 59 | fsum1 |  |-  ( ( 0 e. ZZ /\ ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) ) | 
						
							| 61 | 39 56 60 | sylancr |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) ) | 
						
							| 62 | 61 55 | eqtrd |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( coeff ` F ) ` 0 ) ) | 
						
							| 63 | 62 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> ( ( coeff ` F ) ` 0 ) ) ) | 
						
							| 64 |  | fconstmpt |  |-  ( CC X. { ( ( coeff ` F ) ` 0 ) } ) = ( z e. CC |-> ( ( coeff ` F ) ` 0 ) ) | 
						
							| 65 | 63 64 | eqtr4di |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( CC X. { ( ( coeff ` F ) ` 0 ) } ) ) | 
						
							| 66 |  | plyconst |  |-  ( ( ( S u. { 0 } ) C_ CC /\ ( ( coeff ` F ) ` 0 ) e. ( S u. { 0 } ) ) -> ( CC X. { ( ( coeff ` F ) ` 0 ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) | 
						
							| 67 | 46 51 66 | syl2anc |  |-  ( ph -> ( CC X. { ( ( coeff ` F ) ` 0 ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) | 
						
							| 68 |  | plyun0 |  |-  ( Poly ` ( S u. { 0 } ) ) = ( Poly ` S ) | 
						
							| 69 | 67 68 | eleqtrdi |  |-  ( ph -> ( CC X. { ( ( coeff ` F ) ` 0 ) } ) e. ( Poly ` S ) ) | 
						
							| 70 | 65 69 | eqeltrd |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) | 
						
							| 71 |  | simprr |  |-  ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) | 
						
							| 72 | 46 | adantr |  |-  ( ( ph /\ d e. NN0 ) -> ( S u. { 0 } ) C_ CC ) | 
						
							| 73 |  | peano2nn0 |  |-  ( d e. NN0 -> ( d + 1 ) e. NN0 ) | 
						
							| 74 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ ( d + 1 ) e. NN0 ) -> ( ( coeff ` F ) ` ( d + 1 ) ) e. ( S u. { 0 } ) ) | 
						
							| 75 | 48 73 74 | syl2an |  |-  ( ( ph /\ d e. NN0 ) -> ( ( coeff ` F ) ` ( d + 1 ) ) e. ( S u. { 0 } ) ) | 
						
							| 76 |  | plyconst |  |-  ( ( ( S u. { 0 } ) C_ CC /\ ( ( coeff ` F ) ` ( d + 1 ) ) e. ( S u. { 0 } ) ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) | 
						
							| 77 | 72 75 76 | syl2anc |  |-  ( ( ph /\ d e. NN0 ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) | 
						
							| 78 | 77 68 | eleqtrdi |  |-  ( ( ph /\ d e. NN0 ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) e. ( Poly ` S ) ) | 
						
							| 79 |  | nn0p1nn |  |-  ( d e. NN0 -> ( d + 1 ) e. NN ) | 
						
							| 80 |  | oveq2 |  |-  ( x = 1 -> ( ( G ` z ) ^ x ) = ( ( G ` z ) ^ 1 ) ) | 
						
							| 81 | 80 | mpteq2dv |  |-  ( x = 1 -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) = ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) ) | 
						
							| 82 | 81 | eleq1d |  |-  ( x = 1 -> ( ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) e. ( Poly ` S ) ) ) | 
						
							| 83 | 82 | imbi2d |  |-  ( x = 1 -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 84 |  | oveq2 |  |-  ( x = d -> ( ( G ` z ) ^ x ) = ( ( G ` z ) ^ d ) ) | 
						
							| 85 | 84 | mpteq2dv |  |-  ( x = d -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) = ( z e. CC |-> ( ( G ` z ) ^ d ) ) ) | 
						
							| 86 | 85 | eleq1d |  |-  ( x = d -> ( ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) | 
						
							| 87 | 86 | imbi2d |  |-  ( x = d -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 88 |  | oveq2 |  |-  ( x = ( d + 1 ) -> ( ( G ` z ) ^ x ) = ( ( G ` z ) ^ ( d + 1 ) ) ) | 
						
							| 89 | 88 | mpteq2dv |  |-  ( x = ( d + 1 ) -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) = ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) | 
						
							| 90 | 89 | eleq1d |  |-  ( x = ( d + 1 ) -> ( ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 91 | 90 | imbi2d |  |-  ( x = ( d + 1 ) -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 92 | 7 | exp1d |  |-  ( ( ph /\ z e. CC ) -> ( ( G ` z ) ^ 1 ) = ( G ` z ) ) | 
						
							| 93 | 92 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) = ( z e. CC |-> ( G ` z ) ) ) | 
						
							| 94 | 93 8 | eqtr4d |  |-  ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) = G ) | 
						
							| 95 | 94 2 | eqeltrd |  |-  ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) e. ( Poly ` S ) ) | 
						
							| 96 |  | simprr |  |-  ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) | 
						
							| 97 | 2 | adantr |  |-  ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) -> G e. ( Poly ` S ) ) | 
						
							| 98 | 3 | adantlr |  |-  ( ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 99 | 4 | adantlr |  |-  ( ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 100 | 96 97 98 99 | plymul |  |-  ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) e. ( Poly ` S ) ) | 
						
							| 101 | 100 | expr |  |-  ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) e. ( Poly ` S ) ) ) | 
						
							| 102 |  | cnex |  |-  CC e. _V | 
						
							| 103 | 102 | a1i |  |-  ( ( ph /\ d e. NN ) -> CC e. _V ) | 
						
							| 104 |  | ovexd |  |-  ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> ( ( G ` z ) ^ d ) e. _V ) | 
						
							| 105 | 7 | adantlr |  |-  ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> ( G ` z ) e. CC ) | 
						
							| 106 |  | eqidd |  |-  ( ( ph /\ d e. NN ) -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) = ( z e. CC |-> ( ( G ` z ) ^ d ) ) ) | 
						
							| 107 | 8 | adantr |  |-  ( ( ph /\ d e. NN ) -> G = ( z e. CC |-> ( G ` z ) ) ) | 
						
							| 108 | 103 104 105 106 107 | offval2 |  |-  ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) = ( z e. CC |-> ( ( ( G ` z ) ^ d ) x. ( G ` z ) ) ) ) | 
						
							| 109 |  | nnnn0 |  |-  ( d e. NN -> d e. NN0 ) | 
						
							| 110 | 109 | ad2antlr |  |-  ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> d e. NN0 ) | 
						
							| 111 | 105 110 | expp1d |  |-  ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> ( ( G ` z ) ^ ( d + 1 ) ) = ( ( ( G ` z ) ^ d ) x. ( G ` z ) ) ) | 
						
							| 112 | 111 | mpteq2dva |  |-  ( ( ph /\ d e. NN ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) = ( z e. CC |-> ( ( ( G ` z ) ^ d ) x. ( G ` z ) ) ) ) | 
						
							| 113 | 108 112 | eqtr4d |  |-  ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) = ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) | 
						
							| 114 | 113 | eleq1d |  |-  ( ( ph /\ d e. NN ) -> ( ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 115 | 101 114 | sylibd |  |-  ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 116 | 115 | expcom |  |-  ( d e. NN -> ( ph -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 117 | 116 | a2d |  |-  ( d e. NN -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) -> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 118 | 83 87 91 91 95 117 | nnind |  |-  ( ( d + 1 ) e. NN -> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 119 | 79 118 | syl |  |-  ( d e. NN0 -> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 120 | 119 | impcom |  |-  ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) | 
						
							| 121 | 3 | adantlr |  |-  ( ( ( ph /\ d e. NN0 ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 122 | 4 | adantlr |  |-  ( ( ( ph /\ d e. NN0 ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 123 | 78 120 121 122 | plymul |  |-  ( ( ph /\ d e. NN0 ) -> ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) e. ( Poly ` S ) ) | 
						
							| 124 | 123 | adantrr |  |-  ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) -> ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) e. ( Poly ` S ) ) | 
						
							| 125 | 3 | adantlr |  |-  ( ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 126 | 71 124 125 | plyadd |  |-  ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) e. ( Poly ` S ) ) | 
						
							| 127 | 126 | expr |  |-  ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 128 | 102 | a1i |  |-  ( ( ph /\ d e. NN0 ) -> CC e. _V ) | 
						
							| 129 |  | sumex |  |-  sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) e. _V | 
						
							| 130 | 129 | a1i |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) e. _V ) | 
						
							| 131 |  | ovexd |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) e. _V ) | 
						
							| 132 |  | eqidd |  |-  ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 133 |  | fvexd |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( ( coeff ` F ) ` ( d + 1 ) ) e. _V ) | 
						
							| 134 |  | ovexd |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( ( G ` z ) ^ ( d + 1 ) ) e. _V ) | 
						
							| 135 |  | fconstmpt |  |-  ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) = ( z e. CC |-> ( ( coeff ` F ) ` ( d + 1 ) ) ) | 
						
							| 136 | 135 | a1i |  |-  ( ( ph /\ d e. NN0 ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) = ( z e. CC |-> ( ( coeff ` F ) ` ( d + 1 ) ) ) ) | 
						
							| 137 |  | eqidd |  |-  ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) = ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) | 
						
							| 138 | 128 133 134 136 137 | offval2 |  |-  ( ( ph /\ d e. NN0 ) -> ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) = ( z e. CC |-> ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) | 
						
							| 139 | 128 130 131 132 138 | offval2 |  |-  ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) = ( z e. CC |-> ( sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) + ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) ) | 
						
							| 140 |  | simplr |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> d e. NN0 ) | 
						
							| 141 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 142 | 140 141 | eleqtrdi |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> d e. ( ZZ>= ` 0 ) ) | 
						
							| 143 | 9 | coef3 |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 144 | 1 143 | syl |  |-  ( ph -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 145 | 144 | ad2antrr |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 146 |  | elfznn0 |  |-  ( k e. ( 0 ... ( d + 1 ) ) -> k e. NN0 ) | 
						
							| 147 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> CC /\ k e. NN0 ) -> ( ( coeff ` F ) ` k ) e. CC ) | 
						
							| 148 | 145 146 147 | syl2an |  |-  ( ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) /\ k e. ( 0 ... ( d + 1 ) ) ) -> ( ( coeff ` F ) ` k ) e. CC ) | 
						
							| 149 | 7 | adantlr |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( G ` z ) e. CC ) | 
						
							| 150 |  | expcl |  |-  ( ( ( G ` z ) e. CC /\ k e. NN0 ) -> ( ( G ` z ) ^ k ) e. CC ) | 
						
							| 151 | 149 146 150 | syl2an |  |-  ( ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) /\ k e. ( 0 ... ( d + 1 ) ) ) -> ( ( G ` z ) ^ k ) e. CC ) | 
						
							| 152 | 148 151 | mulcld |  |-  ( ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) /\ k e. ( 0 ... ( d + 1 ) ) ) -> ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) e. CC ) | 
						
							| 153 |  | fveq2 |  |-  ( k = ( d + 1 ) -> ( ( coeff ` F ) ` k ) = ( ( coeff ` F ) ` ( d + 1 ) ) ) | 
						
							| 154 |  | oveq2 |  |-  ( k = ( d + 1 ) -> ( ( G ` z ) ^ k ) = ( ( G ` z ) ^ ( d + 1 ) ) ) | 
						
							| 155 | 153 154 | oveq12d |  |-  ( k = ( d + 1 ) -> ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) | 
						
							| 156 | 142 152 155 | fsump1 |  |-  ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) + ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) | 
						
							| 157 | 156 | mpteq2dva |  |-  ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> ( sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) + ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) ) | 
						
							| 158 | 139 157 | eqtr4d |  |-  ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) | 
						
							| 159 | 158 | eleq1d |  |-  ( ( ph /\ d e. NN0 ) -> ( ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 160 | 127 159 | sylibd |  |-  ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 161 | 160 | expcom |  |-  ( d e. NN0 -> ( ph -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 162 | 161 | a2d |  |-  ( d e. NN0 -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) -> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) | 
						
							| 163 | 23 28 33 38 70 162 | nn0ind |  |-  ( ( deg ` F ) e. NN0 -> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) | 
						
							| 164 | 18 163 | mpcom |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) | 
						
							| 165 | 16 164 | eqeltrd |  |-  ( ph -> ( F o. G ) e. ( Poly ` S ) ) |