Step |
Hyp |
Ref |
Expression |
1 |
|
plyco.1 |
|- ( ph -> F e. ( Poly ` S ) ) |
2 |
|
plyco.2 |
|- ( ph -> G e. ( Poly ` S ) ) |
3 |
|
plyco.3 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
4 |
|
plyco.4 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
5 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
6 |
2 5
|
syl |
|- ( ph -> G : CC --> CC ) |
7 |
6
|
ffvelrnda |
|- ( ( ph /\ z e. CC ) -> ( G ` z ) e. CC ) |
8 |
6
|
feqmptd |
|- ( ph -> G = ( z e. CC |-> ( G ` z ) ) ) |
9 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
10 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
11 |
9 10
|
coeid |
|- ( F e. ( Poly ` S ) -> F = ( x e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) ) ) |
12 |
1 11
|
syl |
|- ( ph -> F = ( x e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) ) ) |
13 |
|
oveq1 |
|- ( x = ( G ` z ) -> ( x ^ k ) = ( ( G ` z ) ^ k ) ) |
14 |
13
|
oveq2d |
|- ( x = ( G ` z ) -> ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) = ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) |
15 |
14
|
sumeq2sdv |
|- ( x = ( G ` z ) -> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( x ^ k ) ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) |
16 |
7 8 12 15
|
fmptco |
|- ( ph -> ( F o. G ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
17 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
18 |
1 17
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
19 |
|
oveq2 |
|- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
20 |
19
|
sumeq1d |
|- ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) |
21 |
20
|
mpteq2dv |
|- ( x = 0 -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
22 |
21
|
eleq1d |
|- ( x = 0 -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
23 |
22
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) |
24 |
|
oveq2 |
|- ( x = d -> ( 0 ... x ) = ( 0 ... d ) ) |
25 |
24
|
sumeq1d |
|- ( x = d -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) |
26 |
25
|
mpteq2dv |
|- ( x = d -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
27 |
26
|
eleq1d |
|- ( x = d -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
28 |
27
|
imbi2d |
|- ( x = d -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) |
29 |
|
oveq2 |
|- ( x = ( d + 1 ) -> ( 0 ... x ) = ( 0 ... ( d + 1 ) ) ) |
30 |
29
|
sumeq1d |
|- ( x = ( d + 1 ) -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) |
31 |
30
|
mpteq2dv |
|- ( x = ( d + 1 ) -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
32 |
31
|
eleq1d |
|- ( x = ( d + 1 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
33 |
32
|
imbi2d |
|- ( x = ( d + 1 ) -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) |
34 |
|
oveq2 |
|- ( x = ( deg ` F ) -> ( 0 ... x ) = ( 0 ... ( deg ` F ) ) ) |
35 |
34
|
sumeq1d |
|- ( x = ( deg ` F ) -> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) |
36 |
35
|
mpteq2dv |
|- ( x = ( deg ` F ) -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
37 |
36
|
eleq1d |
|- ( x = ( deg ` F ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
38 |
37
|
imbi2d |
|- ( x = ( deg ` F ) -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... x ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) |
39 |
|
0z |
|- 0 e. ZZ |
40 |
7
|
exp0d |
|- ( ( ph /\ z e. CC ) -> ( ( G ` z ) ^ 0 ) = 1 ) |
41 |
40
|
oveq2d |
|- ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) = ( ( ( coeff ` F ) ` 0 ) x. 1 ) ) |
42 |
|
plybss |
|- ( F e. ( Poly ` S ) -> S C_ CC ) |
43 |
1 42
|
syl |
|- ( ph -> S C_ CC ) |
44 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
45 |
44
|
snssd |
|- ( ph -> { 0 } C_ CC ) |
46 |
43 45
|
unssd |
|- ( ph -> ( S u. { 0 } ) C_ CC ) |
47 |
9
|
coef |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) |
48 |
1 47
|
syl |
|- ( ph -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) ) |
49 |
|
0nn0 |
|- 0 e. NN0 |
50 |
|
ffvelrn |
|- ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ 0 e. NN0 ) -> ( ( coeff ` F ) ` 0 ) e. ( S u. { 0 } ) ) |
51 |
48 49 50
|
sylancl |
|- ( ph -> ( ( coeff ` F ) ` 0 ) e. ( S u. { 0 } ) ) |
52 |
46 51
|
sseldd |
|- ( ph -> ( ( coeff ` F ) ` 0 ) e. CC ) |
53 |
52
|
adantr |
|- ( ( ph /\ z e. CC ) -> ( ( coeff ` F ) ` 0 ) e. CC ) |
54 |
53
|
mulid1d |
|- ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. 1 ) = ( ( coeff ` F ) ` 0 ) ) |
55 |
41 54
|
eqtrd |
|- ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) = ( ( coeff ` F ) ` 0 ) ) |
56 |
55 53
|
eqeltrd |
|- ( ( ph /\ z e. CC ) -> ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) e. CC ) |
57 |
|
fveq2 |
|- ( k = 0 -> ( ( coeff ` F ) ` k ) = ( ( coeff ` F ) ` 0 ) ) |
58 |
|
oveq2 |
|- ( k = 0 -> ( ( G ` z ) ^ k ) = ( ( G ` z ) ^ 0 ) ) |
59 |
57 58
|
oveq12d |
|- ( k = 0 -> ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) ) |
60 |
59
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) ) |
61 |
39 56 60
|
sylancr |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` 0 ) x. ( ( G ` z ) ^ 0 ) ) ) |
62 |
61 55
|
eqtrd |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( coeff ` F ) ` 0 ) ) |
63 |
62
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> ( ( coeff ` F ) ` 0 ) ) ) |
64 |
|
fconstmpt |
|- ( CC X. { ( ( coeff ` F ) ` 0 ) } ) = ( z e. CC |-> ( ( coeff ` F ) ` 0 ) ) |
65 |
63 64
|
eqtr4di |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( CC X. { ( ( coeff ` F ) ` 0 ) } ) ) |
66 |
|
plyconst |
|- ( ( ( S u. { 0 } ) C_ CC /\ ( ( coeff ` F ) ` 0 ) e. ( S u. { 0 } ) ) -> ( CC X. { ( ( coeff ` F ) ` 0 ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) |
67 |
46 51 66
|
syl2anc |
|- ( ph -> ( CC X. { ( ( coeff ` F ) ` 0 ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) |
68 |
|
plyun0 |
|- ( Poly ` ( S u. { 0 } ) ) = ( Poly ` S ) |
69 |
67 68
|
eleqtrdi |
|- ( ph -> ( CC X. { ( ( coeff ` F ) ` 0 ) } ) e. ( Poly ` S ) ) |
70 |
65 69
|
eqeltrd |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) |
71 |
|
simprr |
|- ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) |
72 |
46
|
adantr |
|- ( ( ph /\ d e. NN0 ) -> ( S u. { 0 } ) C_ CC ) |
73 |
|
peano2nn0 |
|- ( d e. NN0 -> ( d + 1 ) e. NN0 ) |
74 |
|
ffvelrn |
|- ( ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ ( d + 1 ) e. NN0 ) -> ( ( coeff ` F ) ` ( d + 1 ) ) e. ( S u. { 0 } ) ) |
75 |
48 73 74
|
syl2an |
|- ( ( ph /\ d e. NN0 ) -> ( ( coeff ` F ) ` ( d + 1 ) ) e. ( S u. { 0 } ) ) |
76 |
|
plyconst |
|- ( ( ( S u. { 0 } ) C_ CC /\ ( ( coeff ` F ) ` ( d + 1 ) ) e. ( S u. { 0 } ) ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) |
77 |
72 75 76
|
syl2anc |
|- ( ( ph /\ d e. NN0 ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) e. ( Poly ` ( S u. { 0 } ) ) ) |
78 |
77 68
|
eleqtrdi |
|- ( ( ph /\ d e. NN0 ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) e. ( Poly ` S ) ) |
79 |
|
nn0p1nn |
|- ( d e. NN0 -> ( d + 1 ) e. NN ) |
80 |
|
oveq2 |
|- ( x = 1 -> ( ( G ` z ) ^ x ) = ( ( G ` z ) ^ 1 ) ) |
81 |
80
|
mpteq2dv |
|- ( x = 1 -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) = ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) ) |
82 |
81
|
eleq1d |
|- ( x = 1 -> ( ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) e. ( Poly ` S ) ) ) |
83 |
82
|
imbi2d |
|- ( x = 1 -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) e. ( Poly ` S ) ) ) ) |
84 |
|
oveq2 |
|- ( x = d -> ( ( G ` z ) ^ x ) = ( ( G ` z ) ^ d ) ) |
85 |
84
|
mpteq2dv |
|- ( x = d -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) = ( z e. CC |-> ( ( G ` z ) ^ d ) ) ) |
86 |
85
|
eleq1d |
|- ( x = d -> ( ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) |
87 |
86
|
imbi2d |
|- ( x = d -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) ) |
88 |
|
oveq2 |
|- ( x = ( d + 1 ) -> ( ( G ` z ) ^ x ) = ( ( G ` z ) ^ ( d + 1 ) ) ) |
89 |
88
|
mpteq2dv |
|- ( x = ( d + 1 ) -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) = ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) |
90 |
89
|
eleq1d |
|- ( x = ( d + 1 ) -> ( ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) |
91 |
90
|
imbi2d |
|- ( x = ( d + 1 ) -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ x ) ) e. ( Poly ` S ) ) <-> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) ) |
92 |
7
|
exp1d |
|- ( ( ph /\ z e. CC ) -> ( ( G ` z ) ^ 1 ) = ( G ` z ) ) |
93 |
92
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) = ( z e. CC |-> ( G ` z ) ) ) |
94 |
93 8
|
eqtr4d |
|- ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) = G ) |
95 |
94 2
|
eqeltrd |
|- ( ph -> ( z e. CC |-> ( ( G ` z ) ^ 1 ) ) e. ( Poly ` S ) ) |
96 |
|
simprr |
|- ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) |
97 |
2
|
adantr |
|- ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) -> G e. ( Poly ` S ) ) |
98 |
3
|
adantlr |
|- ( ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
99 |
4
|
adantlr |
|- ( ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
100 |
96 97 98 99
|
plymul |
|- ( ( ph /\ ( d e. NN /\ ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) e. ( Poly ` S ) ) |
101 |
100
|
expr |
|- ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) e. ( Poly ` S ) ) ) |
102 |
|
cnex |
|- CC e. _V |
103 |
102
|
a1i |
|- ( ( ph /\ d e. NN ) -> CC e. _V ) |
104 |
|
ovexd |
|- ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> ( ( G ` z ) ^ d ) e. _V ) |
105 |
7
|
adantlr |
|- ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> ( G ` z ) e. CC ) |
106 |
|
eqidd |
|- ( ( ph /\ d e. NN ) -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) = ( z e. CC |-> ( ( G ` z ) ^ d ) ) ) |
107 |
8
|
adantr |
|- ( ( ph /\ d e. NN ) -> G = ( z e. CC |-> ( G ` z ) ) ) |
108 |
103 104 105 106 107
|
offval2 |
|- ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) = ( z e. CC |-> ( ( ( G ` z ) ^ d ) x. ( G ` z ) ) ) ) |
109 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
110 |
109
|
ad2antlr |
|- ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> d e. NN0 ) |
111 |
105 110
|
expp1d |
|- ( ( ( ph /\ d e. NN ) /\ z e. CC ) -> ( ( G ` z ) ^ ( d + 1 ) ) = ( ( ( G ` z ) ^ d ) x. ( G ` z ) ) ) |
112 |
111
|
mpteq2dva |
|- ( ( ph /\ d e. NN ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) = ( z e. CC |-> ( ( ( G ` z ) ^ d ) x. ( G ` z ) ) ) ) |
113 |
108 112
|
eqtr4d |
|- ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) = ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) |
114 |
113
|
eleq1d |
|- ( ( ph /\ d e. NN ) -> ( ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) oF x. G ) e. ( Poly ` S ) <-> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) |
115 |
101 114
|
sylibd |
|- ( ( ph /\ d e. NN ) -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) |
116 |
115
|
expcom |
|- ( d e. NN -> ( ph -> ( ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) ) |
117 |
116
|
a2d |
|- ( d e. NN -> ( ( ph -> ( z e. CC |-> ( ( G ` z ) ^ d ) ) e. ( Poly ` S ) ) -> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) ) |
118 |
83 87 91 91 95 117
|
nnind |
|- ( ( d + 1 ) e. NN -> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) |
119 |
79 118
|
syl |
|- ( d e. NN0 -> ( ph -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) ) |
120 |
119
|
impcom |
|- ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) e. ( Poly ` S ) ) |
121 |
3
|
adantlr |
|- ( ( ( ph /\ d e. NN0 ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
122 |
4
|
adantlr |
|- ( ( ( ph /\ d e. NN0 ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
123 |
78 120 121 122
|
plymul |
|- ( ( ph /\ d e. NN0 ) -> ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) e. ( Poly ` S ) ) |
124 |
123
|
adantrr |
|- ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) -> ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) e. ( Poly ` S ) ) |
125 |
3
|
adantlr |
|- ( ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
126 |
71 124 125
|
plyadd |
|- ( ( ph /\ ( d e. NN0 /\ ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) e. ( Poly ` S ) ) |
127 |
126
|
expr |
|- ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) e. ( Poly ` S ) ) ) |
128 |
102
|
a1i |
|- ( ( ph /\ d e. NN0 ) -> CC e. _V ) |
129 |
|
sumex |
|- sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) e. _V |
130 |
129
|
a1i |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) e. _V ) |
131 |
|
ovexd |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) e. _V ) |
132 |
|
eqidd |
|- ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
133 |
|
fvexd |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( ( coeff ` F ) ` ( d + 1 ) ) e. _V ) |
134 |
|
ovexd |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( ( G ` z ) ^ ( d + 1 ) ) e. _V ) |
135 |
|
fconstmpt |
|- ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) = ( z e. CC |-> ( ( coeff ` F ) ` ( d + 1 ) ) ) |
136 |
135
|
a1i |
|- ( ( ph /\ d e. NN0 ) -> ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) = ( z e. CC |-> ( ( coeff ` F ) ` ( d + 1 ) ) ) ) |
137 |
|
eqidd |
|- ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) = ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) |
138 |
128 133 134 136 137
|
offval2 |
|- ( ( ph /\ d e. NN0 ) -> ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) = ( z e. CC |-> ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) |
139 |
128 130 131 132 138
|
offval2 |
|- ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) = ( z e. CC |-> ( sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) + ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) ) |
140 |
|
simplr |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> d e. NN0 ) |
141 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
142 |
140 141
|
eleqtrdi |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> d e. ( ZZ>= ` 0 ) ) |
143 |
9
|
coef3 |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) |
144 |
1 143
|
syl |
|- ( ph -> ( coeff ` F ) : NN0 --> CC ) |
145 |
144
|
ad2antrr |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( coeff ` F ) : NN0 --> CC ) |
146 |
|
elfznn0 |
|- ( k e. ( 0 ... ( d + 1 ) ) -> k e. NN0 ) |
147 |
|
ffvelrn |
|- ( ( ( coeff ` F ) : NN0 --> CC /\ k e. NN0 ) -> ( ( coeff ` F ) ` k ) e. CC ) |
148 |
145 146 147
|
syl2an |
|- ( ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) /\ k e. ( 0 ... ( d + 1 ) ) ) -> ( ( coeff ` F ) ` k ) e. CC ) |
149 |
7
|
adantlr |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> ( G ` z ) e. CC ) |
150 |
|
expcl |
|- ( ( ( G ` z ) e. CC /\ k e. NN0 ) -> ( ( G ` z ) ^ k ) e. CC ) |
151 |
149 146 150
|
syl2an |
|- ( ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) /\ k e. ( 0 ... ( d + 1 ) ) ) -> ( ( G ` z ) ^ k ) e. CC ) |
152 |
148 151
|
mulcld |
|- ( ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) /\ k e. ( 0 ... ( d + 1 ) ) ) -> ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) e. CC ) |
153 |
|
fveq2 |
|- ( k = ( d + 1 ) -> ( ( coeff ` F ) ` k ) = ( ( coeff ` F ) ` ( d + 1 ) ) ) |
154 |
|
oveq2 |
|- ( k = ( d + 1 ) -> ( ( G ` z ) ^ k ) = ( ( G ` z ) ^ ( d + 1 ) ) ) |
155 |
153 154
|
oveq12d |
|- ( k = ( d + 1 ) -> ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) |
156 |
142 152 155
|
fsump1 |
|- ( ( ( ph /\ d e. NN0 ) /\ z e. CC ) -> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) = ( sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) + ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) |
157 |
156
|
mpteq2dva |
|- ( ( ph /\ d e. NN0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) = ( z e. CC |-> ( sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) + ( ( ( coeff ` F ) ` ( d + 1 ) ) x. ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) ) |
158 |
139 157
|
eqtr4d |
|- ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) ) |
159 |
158
|
eleq1d |
|- ( ( ph /\ d e. NN0 ) -> ( ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) oF + ( ( CC X. { ( ( coeff ` F ) ` ( d + 1 ) ) } ) oF x. ( z e. CC |-> ( ( G ` z ) ^ ( d + 1 ) ) ) ) ) e. ( Poly ` S ) <-> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
160 |
127 159
|
sylibd |
|- ( ( ph /\ d e. NN0 ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
161 |
160
|
expcom |
|- ( d e. NN0 -> ( ph -> ( ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) |
162 |
161
|
a2d |
|- ( d e. NN0 -> ( ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... d ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) -> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( d + 1 ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) ) |
163 |
23 28 33 38 70 162
|
nn0ind |
|- ( ( deg ` F ) e. NN0 -> ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) ) |
164 |
18 163
|
mpcom |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) |
165 |
16 164
|
eqeltrd |
|- ( ph -> ( F o. G ) e. ( Poly ` S ) ) |