Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( A ` k ) =/= 0 ) |
2 |
|
ffun |
|- ( A : NN0 --> CC -> Fun A ) |
3 |
2
|
adantl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> Fun A ) |
4 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
5 |
4
|
adantr |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. NN0 ) |
6 |
|
eluznn0 |
|- ( ( ( N + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. NN0 ) |
7 |
6
|
ex |
|- ( ( N + 1 ) e. NN0 -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> k e. NN0 ) ) |
8 |
5 7
|
syl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> k e. NN0 ) ) |
9 |
8
|
ssrdv |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ZZ>= ` ( N + 1 ) ) C_ NN0 ) |
10 |
|
fdm |
|- ( A : NN0 --> CC -> dom A = NN0 ) |
11 |
10
|
adantl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> dom A = NN0 ) |
12 |
9 11
|
sseqtrrd |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ZZ>= ` ( N + 1 ) ) C_ dom A ) |
13 |
|
funfvima2 |
|- ( ( Fun A /\ ( ZZ>= ` ( N + 1 ) ) C_ dom A ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
14 |
3 12 13
|
syl2anc |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
15 |
14
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
16 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
17 |
16
|
adantr |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> N e. ZZ ) |
18 |
17
|
peano2zd |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. ZZ ) |
19 |
18
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( N + 1 ) e. ZZ ) |
20 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
21 |
20
|
ad2antrl |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k e. ZZ ) |
22 |
|
eluz |
|- ( ( ( N + 1 ) e. ZZ /\ k e. ZZ ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) <-> ( N + 1 ) <_ k ) ) |
23 |
19 21 22
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k e. ( ZZ>= ` ( N + 1 ) ) <-> ( N + 1 ) <_ k ) ) |
24 |
|
simplr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
25 |
24
|
eleq2d |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) <-> ( A ` k ) e. { 0 } ) ) |
26 |
|
fvex |
|- ( A ` k ) e. _V |
27 |
26
|
elsn |
|- ( ( A ` k ) e. { 0 } <-> ( A ` k ) = 0 ) |
28 |
25 27
|
bitrdi |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( A ` k ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) <-> ( A ` k ) = 0 ) ) |
29 |
15 23 28
|
3imtr3d |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( N + 1 ) <_ k -> ( A ` k ) = 0 ) ) |
30 |
29
|
necon3ad |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( ( A ` k ) =/= 0 -> -. ( N + 1 ) <_ k ) ) |
31 |
1 30
|
mpd |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> -. ( N + 1 ) <_ k ) |
32 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
33 |
32
|
ad2antrl |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k e. RR ) |
34 |
18
|
zred |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. RR ) |
35 |
34
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( N + 1 ) e. RR ) |
36 |
33 35
|
ltnled |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k < ( N + 1 ) <-> -. ( N + 1 ) <_ k ) ) |
37 |
31 36
|
mpbird |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k < ( N + 1 ) ) |
38 |
17
|
ad2antrr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> N e. ZZ ) |
39 |
|
zleltp1 |
|- ( ( k e. ZZ /\ N e. ZZ ) -> ( k <_ N <-> k < ( N + 1 ) ) ) |
40 |
21 38 39
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> ( k <_ N <-> k < ( N + 1 ) ) ) |
41 |
37 40
|
mpbird |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ ( k e. NN0 /\ ( A ` k ) =/= 0 ) ) -> k <_ N ) |
42 |
41
|
expr |
|- ( ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
43 |
42
|
ralrimiva |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
44 |
|
simpr |
|- ( ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. ( ZZ>= ` ( N + 1 ) ) ) |
45 |
|
eluznn0 |
|- ( ( ( N + 1 ) e. NN0 /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. NN0 ) |
46 |
5 44 45
|
syl2an |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> n e. NN0 ) |
47 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
48 |
47
|
adantr |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> N e. RR ) |
49 |
48
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> N e. RR ) |
50 |
34
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( N + 1 ) e. RR ) |
51 |
46
|
nn0red |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> n e. RR ) |
52 |
49
|
ltp1d |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> N < ( N + 1 ) ) |
53 |
|
eluzle |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( N + 1 ) <_ n ) |
54 |
53
|
ad2antll |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( N + 1 ) <_ n ) |
55 |
49 50 51 52 54
|
ltletrd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> N < n ) |
56 |
49 51
|
ltnled |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( N < n <-> -. n <_ N ) ) |
57 |
55 56
|
mpbid |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> -. n <_ N ) |
58 |
|
fveq2 |
|- ( k = n -> ( A ` k ) = ( A ` n ) ) |
59 |
58
|
neeq1d |
|- ( k = n -> ( ( A ` k ) =/= 0 <-> ( A ` n ) =/= 0 ) ) |
60 |
|
breq1 |
|- ( k = n -> ( k <_ N <-> n <_ N ) ) |
61 |
59 60
|
imbi12d |
|- ( k = n -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` n ) =/= 0 -> n <_ N ) ) ) |
62 |
|
simprl |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) |
63 |
61 62 46
|
rspcdva |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( ( A ` n ) =/= 0 -> n <_ N ) ) |
64 |
63
|
necon1bd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( -. n <_ N -> ( A ` n ) = 0 ) ) |
65 |
57 64
|
mpd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( A ` n ) = 0 ) |
66 |
|
ffn |
|- ( A : NN0 --> CC -> A Fn NN0 ) |
67 |
66
|
ad2antlr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> A Fn NN0 ) |
68 |
|
fniniseg |
|- ( A Fn NN0 -> ( n e. ( `' A " { 0 } ) <-> ( n e. NN0 /\ ( A ` n ) = 0 ) ) ) |
69 |
67 68
|
syl |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> ( n e. ( `' A " { 0 } ) <-> ( n e. NN0 /\ ( A ` n ) = 0 ) ) ) |
70 |
46 65 69
|
mpbir2and |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ ( A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) /\ n e. ( ZZ>= ` ( N + 1 ) ) ) ) -> n e. ( `' A " { 0 } ) ) |
71 |
70
|
expr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( n e. ( ZZ>= ` ( N + 1 ) ) -> n e. ( `' A " { 0 } ) ) ) |
72 |
71
|
ssrdv |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) |
73 |
|
funimass3 |
|- ( ( Fun A /\ ( ZZ>= ` ( N + 1 ) ) C_ dom A ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } <-> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) ) |
74 |
3 12 73
|
syl2anc |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } <-> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) ) |
75 |
74
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } <-> ( ZZ>= ` ( N + 1 ) ) C_ ( `' A " { 0 } ) ) ) |
76 |
72 75
|
mpbird |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) C_ { 0 } ) |
77 |
48
|
ltp1d |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> N < ( N + 1 ) ) |
78 |
48 34
|
ltnled |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
79 |
77 78
|
mpbid |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> -. ( N + 1 ) <_ N ) |
80 |
79
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> -. ( N + 1 ) <_ N ) |
81 |
|
fveq2 |
|- ( k = ( N + 1 ) -> ( A ` k ) = ( A ` ( N + 1 ) ) ) |
82 |
81
|
neeq1d |
|- ( k = ( N + 1 ) -> ( ( A ` k ) =/= 0 <-> ( A ` ( N + 1 ) ) =/= 0 ) ) |
83 |
|
breq1 |
|- ( k = ( N + 1 ) -> ( k <_ N <-> ( N + 1 ) <_ N ) ) |
84 |
82 83
|
imbi12d |
|- ( k = ( N + 1 ) -> ( ( ( A ` k ) =/= 0 -> k <_ N ) <-> ( ( A ` ( N + 1 ) ) =/= 0 -> ( N + 1 ) <_ N ) ) ) |
85 |
84
|
rspcva |
|- ( ( ( N + 1 ) e. NN0 /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ( A ` ( N + 1 ) ) =/= 0 -> ( N + 1 ) <_ N ) ) |
86 |
5 85
|
sylan |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( ( A ` ( N + 1 ) ) =/= 0 -> ( N + 1 ) <_ N ) ) |
87 |
86
|
necon1bd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( -. ( N + 1 ) <_ N -> ( A ` ( N + 1 ) ) = 0 ) ) |
88 |
80 87
|
mpd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A ` ( N + 1 ) ) = 0 ) |
89 |
|
uzid |
|- ( ( N + 1 ) e. ZZ -> ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) ) |
90 |
18 89
|
syl |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) ) |
91 |
|
funfvima2 |
|- ( ( Fun A /\ ( ZZ>= ` ( N + 1 ) ) C_ dom A ) -> ( ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
92 |
3 12 91
|
syl2anc |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) ) |
93 |
90 92
|
mpd |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
94 |
93
|
adantr |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A ` ( N + 1 ) ) e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
95 |
88 94
|
eqeltrrd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> 0 e. ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
96 |
95
|
snssd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> { 0 } C_ ( A " ( ZZ>= ` ( N + 1 ) ) ) ) |
97 |
76 96
|
eqssd |
|- ( ( ( N e. NN0 /\ A : NN0 --> CC ) /\ A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
98 |
43 97
|
impbida |
|- ( ( N e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ N ) ) ) |