Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
9 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
10 |
5 9
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
11 |
10
|
nn0red |
|- ( ph -> ( deg ` F ) e. RR ) |
12 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
13 |
6 12
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
14 |
13
|
nn0red |
|- ( ph -> ( deg ` G ) e. RR ) |
15 |
11 14
|
resubcld |
|- ( ph -> ( ( deg ` F ) - ( deg ` G ) ) e. RR ) |
16 |
|
arch |
|- ( ( ( deg ` F ) - ( deg ` G ) ) e. RR -> E. d e. NN ( ( deg ` F ) - ( deg ` G ) ) < d ) |
17 |
15 16
|
syl |
|- ( ph -> E. d e. NN ( ( deg ` F ) - ( deg ` G ) ) < d ) |
18 |
|
olc |
|- ( ( ( deg ` F ) - ( deg ` G ) ) < d -> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) ) |
19 |
|
eqeq1 |
|- ( f = F -> ( f = 0p <-> F = 0p ) ) |
20 |
|
fveq2 |
|- ( f = F -> ( deg ` f ) = ( deg ` F ) ) |
21 |
20
|
oveq1d |
|- ( f = F -> ( ( deg ` f ) - ( deg ` G ) ) = ( ( deg ` F ) - ( deg ` G ) ) ) |
22 |
21
|
breq1d |
|- ( f = F -> ( ( ( deg ` f ) - ( deg ` G ) ) < d <-> ( ( deg ` F ) - ( deg ` G ) ) < d ) ) |
23 |
19 22
|
orbi12d |
|- ( f = F -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) <-> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) ) ) |
24 |
|
oveq1 |
|- ( f = F -> ( f oF - ( G oF x. q ) ) = ( F oF - ( G oF x. q ) ) ) |
25 |
24 8
|
eqtr4di |
|- ( f = F -> ( f oF - ( G oF x. q ) ) = R ) |
26 |
25
|
eqeq1d |
|- ( f = F -> ( ( f oF - ( G oF x. q ) ) = 0p <-> R = 0p ) ) |
27 |
25
|
fveq2d |
|- ( f = F -> ( deg ` ( f oF - ( G oF x. q ) ) ) = ( deg ` R ) ) |
28 |
27
|
breq1d |
|- ( f = F -> ( ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` R ) < ( deg ` G ) ) ) |
29 |
26 28
|
orbi12d |
|- ( f = F -> ( ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
30 |
29
|
rexbidv |
|- ( f = F -> ( E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
31 |
23 30
|
imbi12d |
|- ( f = F -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) ) |
32 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
33 |
|
breq2 |
|- ( x = 0 -> ( ( ( deg ` f ) - ( deg ` G ) ) < x <-> ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) |
34 |
33
|
orbi2d |
|- ( x = 0 -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) <-> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) |
35 |
34
|
imbi1d |
|- ( x = 0 -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
36 |
35
|
ralbidv |
|- ( x = 0 -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
37 |
36
|
imbi2d |
|- ( x = 0 -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
38 |
|
breq2 |
|- ( x = d -> ( ( ( deg ` f ) - ( deg ` G ) ) < x <-> ( ( deg ` f ) - ( deg ` G ) ) < d ) ) |
39 |
38
|
orbi2d |
|- ( x = d -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) <-> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) ) ) |
40 |
39
|
imbi1d |
|- ( x = d -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
41 |
40
|
ralbidv |
|- ( x = d -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
42 |
41
|
imbi2d |
|- ( x = d -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
43 |
|
breq2 |
|- ( x = ( d + 1 ) -> ( ( ( deg ` f ) - ( deg ` G ) ) < x <-> ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) |
44 |
43
|
orbi2d |
|- ( x = ( d + 1 ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) <-> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) ) |
45 |
44
|
imbi1d |
|- ( x = ( d + 1 ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
46 |
45
|
ralbidv |
|- ( x = ( d + 1 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
47 |
46
|
imbi2d |
|- ( x = ( d + 1 ) -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < x ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
48 |
1
|
adantlr |
|- ( ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
49 |
2
|
adantlr |
|- ( ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
50 |
3
|
adantlr |
|- ( ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
51 |
4
|
adantr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> -u 1 e. S ) |
52 |
|
simprl |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> f e. ( Poly ` S ) ) |
53 |
6
|
adantr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> G e. ( Poly ` S ) ) |
54 |
7
|
adantr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> G =/= 0p ) |
55 |
|
eqid |
|- ( f oF - ( G oF x. q ) ) = ( f oF - ( G oF x. q ) ) |
56 |
|
simprr |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) |
57 |
48 49 50 51 52 53 54 55 56
|
plydivlem3 |
|- ( ( ph /\ ( f e. ( Poly ` S ) /\ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
58 |
57
|
expr |
|- ( ( ph /\ f e. ( Poly ` S ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
59 |
58
|
ralrimiva |
|- ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < 0 ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
60 |
|
eqeq1 |
|- ( f = g -> ( f = 0p <-> g = 0p ) ) |
61 |
|
fveq2 |
|- ( f = g -> ( deg ` f ) = ( deg ` g ) ) |
62 |
61
|
oveq1d |
|- ( f = g -> ( ( deg ` f ) - ( deg ` G ) ) = ( ( deg ` g ) - ( deg ` G ) ) ) |
63 |
62
|
breq1d |
|- ( f = g -> ( ( ( deg ` f ) - ( deg ` G ) ) < d <-> ( ( deg ` g ) - ( deg ` G ) ) < d ) ) |
64 |
60 63
|
orbi12d |
|- ( f = g -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) <-> ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) ) ) |
65 |
|
oveq1 |
|- ( f = g -> ( f oF - ( G oF x. q ) ) = ( g oF - ( G oF x. q ) ) ) |
66 |
65
|
eqeq1d |
|- ( f = g -> ( ( f oF - ( G oF x. q ) ) = 0p <-> ( g oF - ( G oF x. q ) ) = 0p ) ) |
67 |
65
|
fveq2d |
|- ( f = g -> ( deg ` ( f oF - ( G oF x. q ) ) ) = ( deg ` ( g oF - ( G oF x. q ) ) ) ) |
68 |
67
|
breq1d |
|- ( f = g -> ( ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
69 |
66 68
|
orbi12d |
|- ( f = g -> ( ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
70 |
69
|
rexbidv |
|- ( f = g -> ( E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
71 |
64 70
|
imbi12d |
|- ( f = g -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
72 |
71
|
cbvralvw |
|- ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
73 |
|
simplll |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> ph ) |
74 |
73 1
|
sylan |
|- ( ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
75 |
73 2
|
sylan |
|- ( ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
76 |
73 3
|
sylan |
|- ( ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
77 |
73 4
|
syl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> -u 1 e. S ) |
78 |
|
simplr |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> f e. ( Poly ` S ) ) |
79 |
73 6
|
syl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> G e. ( Poly ` S ) ) |
80 |
73 7
|
syl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> G =/= 0p ) |
81 |
|
simpllr |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> d e. NN0 ) |
82 |
|
simprrr |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> ( ( deg ` f ) - ( deg ` G ) ) = d ) |
83 |
|
simprrl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> f =/= 0p ) |
84 |
|
eqid |
|- ( g oF - ( G oF x. p ) ) = ( g oF - ( G oF x. p ) ) |
85 |
|
oveq1 |
|- ( w = z -> ( w ^ d ) = ( z ^ d ) ) |
86 |
85
|
oveq2d |
|- ( w = z -> ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( w ^ d ) ) = ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( z ^ d ) ) ) |
87 |
86
|
cbvmptv |
|- ( w e. CC |-> ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( w ^ d ) ) ) = ( z e. CC |-> ( ( ( ( coeff ` f ) ` ( deg ` f ) ) / ( ( coeff ` G ) ` ( deg ` G ) ) ) x. ( z ^ d ) ) ) |
88 |
|
simprl |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
89 |
|
oveq2 |
|- ( q = p -> ( G oF x. q ) = ( G oF x. p ) ) |
90 |
89
|
oveq2d |
|- ( q = p -> ( g oF - ( G oF x. q ) ) = ( g oF - ( G oF x. p ) ) ) |
91 |
90
|
eqeq1d |
|- ( q = p -> ( ( g oF - ( G oF x. q ) ) = 0p <-> ( g oF - ( G oF x. p ) ) = 0p ) ) |
92 |
90
|
fveq2d |
|- ( q = p -> ( deg ` ( g oF - ( G oF x. q ) ) ) = ( deg ` ( g oF - ( G oF x. p ) ) ) ) |
93 |
92
|
breq1d |
|- ( q = p -> ( ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) |
94 |
91 93
|
orbi12d |
|- ( q = p -> ( ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
95 |
94
|
cbvrexvw |
|- ( E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) |
96 |
95
|
imbi2i |
|- ( ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
97 |
96
|
ralbii |
|- ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
98 |
88 97
|
sylib |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. p e. ( Poly ` S ) ( ( g oF - ( G oF x. p ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. p ) ) ) < ( deg ` G ) ) ) ) |
99 |
|
eqid |
|- ( coeff ` f ) = ( coeff ` f ) |
100 |
|
eqid |
|- ( coeff ` G ) = ( coeff ` G ) |
101 |
|
eqid |
|- ( deg ` f ) = ( deg ` f ) |
102 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
103 |
74 75 76 77 78 79 80 55 81 82 83 84 87 98 99 100 101 102
|
plydivlem4 |
|- ( ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) /\ ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
104 |
103
|
exp32 |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
105 |
104
|
ralrimdva |
|- ( ( ph /\ d e. NN0 ) -> ( A. g e. ( Poly ` S ) ( ( g = 0p \/ ( ( deg ` g ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( g oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( g oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
106 |
72 105
|
syl5bi |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
107 |
106
|
ancld |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
108 |
|
dgrcl |
|- ( f e. ( Poly ` S ) -> ( deg ` f ) e. NN0 ) |
109 |
108
|
adantl |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` f ) e. NN0 ) |
110 |
109
|
nn0zd |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` f ) e. ZZ ) |
111 |
6
|
ad2antrr |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) |
112 |
111 12
|
syl |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` G ) e. NN0 ) |
113 |
112
|
nn0zd |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( deg ` G ) e. ZZ ) |
114 |
110 113
|
zsubcld |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( deg ` f ) - ( deg ` G ) ) e. ZZ ) |
115 |
|
nn0z |
|- ( d e. NN0 -> d e. ZZ ) |
116 |
115
|
ad2antlr |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> d e. ZZ ) |
117 |
|
zleltp1 |
|- ( ( ( ( deg ` f ) - ( deg ` G ) ) e. ZZ /\ d e. ZZ ) -> ( ( ( deg ` f ) - ( deg ` G ) ) <_ d <-> ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) |
118 |
114 116 117
|
syl2anc |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( deg ` f ) - ( deg ` G ) ) <_ d <-> ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) ) |
119 |
114
|
zred |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( deg ` f ) - ( deg ` G ) ) e. RR ) |
120 |
|
nn0re |
|- ( d e. NN0 -> d e. RR ) |
121 |
120
|
ad2antlr |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> d e. RR ) |
122 |
119 121
|
leloed |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( deg ` f ) - ( deg ` G ) ) <_ d <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
123 |
118 122
|
bitr3d |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
124 |
123
|
orbi2d |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) <-> ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
125 |
|
pm5.63 |
|- ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) <-> ( f = 0p \/ ( -. f = 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
126 |
|
df-ne |
|- ( f =/= 0p <-> -. f = 0p ) |
127 |
126
|
anbi1i |
|- ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) <-> ( -. f = 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) |
128 |
127
|
orbi2i |
|- ( ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( f = 0p \/ ( -. f = 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
129 |
125 128
|
bitr4i |
|- ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) <-> ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
130 |
129
|
orbi2i |
|- ( ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
131 |
|
or12 |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
132 |
|
or12 |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) <-> ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f = 0p \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
133 |
130 131 132
|
3bitr4i |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
134 |
|
orass |
|- ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
135 |
133 134
|
bitr4i |
|- ( ( f = 0p \/ ( ( ( deg ` f ) - ( deg ` G ) ) < d \/ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) |
136 |
124 135
|
bitrdi |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) <-> ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) ) ) |
137 |
136
|
imbi1d |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
138 |
|
jaob |
|- ( ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) \/ ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
139 |
137 138
|
bitrdi |
|- ( ( ( ph /\ d e. NN0 ) /\ f e. ( Poly ` S ) ) -> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
140 |
139
|
ralbidva |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> A. f e. ( Poly ` S ) ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
141 |
|
r19.26 |
|- ( A. f e. ( Poly ` S ) ( ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) <-> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
142 |
140 141
|
bitrdi |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) <-> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) /\ A. f e. ( Poly ` S ) ( ( f =/= 0p /\ ( ( deg ` f ) - ( deg ` G ) ) = d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
143 |
107 142
|
sylibrd |
|- ( ( ph /\ d e. NN0 ) -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
144 |
143
|
expcom |
|- ( d e. NN0 -> ( ph -> ( A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
145 |
144
|
a2d |
|- ( d e. NN0 -> ( ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) -> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < ( d + 1 ) ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) ) |
146 |
37 42 47 42 59 145
|
nn0ind |
|- ( d e. NN0 -> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
147 |
32 146
|
syl |
|- ( d e. NN -> ( ph -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) ) |
148 |
147
|
impcom |
|- ( ( ph /\ d e. NN ) -> A. f e. ( Poly ` S ) ( ( f = 0p \/ ( ( deg ` f ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( ( f oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( f oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
149 |
5
|
adantr |
|- ( ( ph /\ d e. NN ) -> F e. ( Poly ` S ) ) |
150 |
31 148 149
|
rspcdva |
|- ( ( ph /\ d e. NN ) -> ( ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < d ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
151 |
18 150
|
syl5 |
|- ( ( ph /\ d e. NN ) -> ( ( ( deg ` F ) - ( deg ` G ) ) < d -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
152 |
151
|
rexlimdva |
|- ( ph -> ( E. d e. NN ( ( deg ` F ) - ( deg ` G ) ) < d -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
153 |
17 152
|
mpd |
|- ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |