Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
9 |
5
|
adantr |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> F e. ( Poly ` S ) ) |
10 |
6
|
adantr |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> G e. ( Poly ` S ) ) |
11 |
|
simpr |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> q e. ( Poly ` S ) ) |
12 |
1
|
adantlr |
|- ( ( ( ph /\ q e. ( Poly ` S ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
13 |
2
|
adantlr |
|- ( ( ( ph /\ q e. ( Poly ` S ) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
14 |
10 11 12 13
|
plymul |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> ( G oF x. q ) e. ( Poly ` S ) ) |
15 |
4
|
adantr |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> -u 1 e. S ) |
16 |
9 14 12 13 15
|
plysub |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> ( F oF - ( G oF x. q ) ) e. ( Poly ` S ) ) |
17 |
8 16
|
eqeltrid |
|- ( ( ph /\ q e. ( Poly ` S ) ) -> R e. ( Poly ` S ) ) |