Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
8 |
|
plydiv.r |
|- R = ( F oF - ( G oF x. q ) ) |
9 |
|
plydiv.0 |
|- ( ph -> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < 0 ) ) |
10 |
|
plybss |
|- ( F e. ( Poly ` S ) -> S C_ CC ) |
11 |
|
ply0 |
|- ( S C_ CC -> 0p e. ( Poly ` S ) ) |
12 |
5 10 11
|
3syl |
|- ( ph -> 0p e. ( Poly ` S ) ) |
13 |
|
cnex |
|- CC e. _V |
14 |
13
|
a1i |
|- ( ph -> CC e. _V ) |
15 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
16 |
|
ffn |
|- ( F : CC --> CC -> F Fn CC ) |
17 |
5 15 16
|
3syl |
|- ( ph -> F Fn CC ) |
18 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
19 |
|
ffn |
|- ( G : CC --> CC -> G Fn CC ) |
20 |
6 18 19
|
3syl |
|- ( ph -> G Fn CC ) |
21 |
|
plyf |
|- ( 0p e. ( Poly ` S ) -> 0p : CC --> CC ) |
22 |
|
ffn |
|- ( 0p : CC --> CC -> 0p Fn CC ) |
23 |
12 21 22
|
3syl |
|- ( ph -> 0p Fn CC ) |
24 |
|
inidm |
|- ( CC i^i CC ) = CC |
25 |
20 23 14 14 24
|
offn |
|- ( ph -> ( G oF x. 0p ) Fn CC ) |
26 |
|
eqidd |
|- ( ( ph /\ z e. CC ) -> ( F ` z ) = ( F ` z ) ) |
27 |
|
eqidd |
|- ( ( ph /\ z e. CC ) -> ( G ` z ) = ( G ` z ) ) |
28 |
|
0pval |
|- ( z e. CC -> ( 0p ` z ) = 0 ) |
29 |
28
|
adantl |
|- ( ( ph /\ z e. CC ) -> ( 0p ` z ) = 0 ) |
30 |
20 23 14 14 24 27 29
|
ofval |
|- ( ( ph /\ z e. CC ) -> ( ( G oF x. 0p ) ` z ) = ( ( G ` z ) x. 0 ) ) |
31 |
6 18
|
syl |
|- ( ph -> G : CC --> CC ) |
32 |
31
|
ffvelrnda |
|- ( ( ph /\ z e. CC ) -> ( G ` z ) e. CC ) |
33 |
32
|
mul01d |
|- ( ( ph /\ z e. CC ) -> ( ( G ` z ) x. 0 ) = 0 ) |
34 |
30 33
|
eqtrd |
|- ( ( ph /\ z e. CC ) -> ( ( G oF x. 0p ) ` z ) = 0 ) |
35 |
5 15
|
syl |
|- ( ph -> F : CC --> CC ) |
36 |
35
|
ffvelrnda |
|- ( ( ph /\ z e. CC ) -> ( F ` z ) e. CC ) |
37 |
36
|
subid1d |
|- ( ( ph /\ z e. CC ) -> ( ( F ` z ) - 0 ) = ( F ` z ) ) |
38 |
14 17 25 17 26 34 37
|
offveq |
|- ( ph -> ( F oF - ( G oF x. 0p ) ) = F ) |
39 |
38
|
eqeq1d |
|- ( ph -> ( ( F oF - ( G oF x. 0p ) ) = 0p <-> F = 0p ) ) |
40 |
38
|
fveq2d |
|- ( ph -> ( deg ` ( F oF - ( G oF x. 0p ) ) ) = ( deg ` F ) ) |
41 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
42 |
6 41
|
syl |
|- ( ph -> ( deg ` G ) e. NN0 ) |
43 |
42
|
nn0red |
|- ( ph -> ( deg ` G ) e. RR ) |
44 |
43
|
recnd |
|- ( ph -> ( deg ` G ) e. CC ) |
45 |
44
|
addid2d |
|- ( ph -> ( 0 + ( deg ` G ) ) = ( deg ` G ) ) |
46 |
45
|
eqcomd |
|- ( ph -> ( deg ` G ) = ( 0 + ( deg ` G ) ) ) |
47 |
40 46
|
breq12d |
|- ( ph -> ( ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) <-> ( deg ` F ) < ( 0 + ( deg ` G ) ) ) ) |
48 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
49 |
5 48
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
50 |
49
|
nn0red |
|- ( ph -> ( deg ` F ) e. RR ) |
51 |
|
0red |
|- ( ph -> 0 e. RR ) |
52 |
50 43 51
|
ltsubaddd |
|- ( ph -> ( ( ( deg ` F ) - ( deg ` G ) ) < 0 <-> ( deg ` F ) < ( 0 + ( deg ` G ) ) ) ) |
53 |
47 52
|
bitr4d |
|- ( ph -> ( ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) <-> ( ( deg ` F ) - ( deg ` G ) ) < 0 ) ) |
54 |
39 53
|
orbi12d |
|- ( ph -> ( ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) <-> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < 0 ) ) ) |
55 |
9 54
|
mpbird |
|- ( ph -> ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) |
56 |
|
oveq2 |
|- ( q = 0p -> ( G oF x. q ) = ( G oF x. 0p ) ) |
57 |
56
|
oveq2d |
|- ( q = 0p -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. 0p ) ) ) |
58 |
8 57
|
syl5eq |
|- ( q = 0p -> R = ( F oF - ( G oF x. 0p ) ) ) |
59 |
58
|
eqeq1d |
|- ( q = 0p -> ( R = 0p <-> ( F oF - ( G oF x. 0p ) ) = 0p ) ) |
60 |
58
|
fveq2d |
|- ( q = 0p -> ( deg ` R ) = ( deg ` ( F oF - ( G oF x. 0p ) ) ) ) |
61 |
60
|
breq1d |
|- ( q = 0p -> ( ( deg ` R ) < ( deg ` G ) <-> ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) |
62 |
59 61
|
orbi12d |
|- ( q = 0p -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) ) |
63 |
62
|
rspcev |
|- ( ( 0p e. ( Poly ` S ) /\ ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |
64 |
12 55 63
|
syl2anc |
|- ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |