| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plydiv.pl |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) | 
						
							| 2 |  | plydiv.tm |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 3 |  | plydiv.rc |  |-  ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) | 
						
							| 4 |  | plydiv.m1 |  |-  ( ph -> -u 1 e. S ) | 
						
							| 5 |  | plydiv.f |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 6 |  | plydiv.g |  |-  ( ph -> G e. ( Poly ` S ) ) | 
						
							| 7 |  | plydiv.z |  |-  ( ph -> G =/= 0p ) | 
						
							| 8 |  | plydiv.r |  |-  R = ( F oF - ( G oF x. q ) ) | 
						
							| 9 |  | plydiv.0 |  |-  ( ph -> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < 0 ) ) | 
						
							| 10 |  | plybss |  |-  ( F e. ( Poly ` S ) -> S C_ CC ) | 
						
							| 11 |  | ply0 |  |-  ( S C_ CC -> 0p e. ( Poly ` S ) ) | 
						
							| 12 | 5 10 11 | 3syl |  |-  ( ph -> 0p e. ( Poly ` S ) ) | 
						
							| 13 |  | cnex |  |-  CC e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 15 |  | plyf |  |-  ( F e. ( Poly ` S ) -> F : CC --> CC ) | 
						
							| 16 |  | ffn |  |-  ( F : CC --> CC -> F Fn CC ) | 
						
							| 17 | 5 15 16 | 3syl |  |-  ( ph -> F Fn CC ) | 
						
							| 18 |  | plyf |  |-  ( G e. ( Poly ` S ) -> G : CC --> CC ) | 
						
							| 19 |  | ffn |  |-  ( G : CC --> CC -> G Fn CC ) | 
						
							| 20 | 6 18 19 | 3syl |  |-  ( ph -> G Fn CC ) | 
						
							| 21 |  | plyf |  |-  ( 0p e. ( Poly ` S ) -> 0p : CC --> CC ) | 
						
							| 22 |  | ffn |  |-  ( 0p : CC --> CC -> 0p Fn CC ) | 
						
							| 23 | 12 21 22 | 3syl |  |-  ( ph -> 0p Fn CC ) | 
						
							| 24 |  | inidm |  |-  ( CC i^i CC ) = CC | 
						
							| 25 | 20 23 14 14 24 | offn |  |-  ( ph -> ( G oF x. 0p ) Fn CC ) | 
						
							| 26 |  | eqidd |  |-  ( ( ph /\ z e. CC ) -> ( F ` z ) = ( F ` z ) ) | 
						
							| 27 |  | eqidd |  |-  ( ( ph /\ z e. CC ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 28 |  | 0pval |  |-  ( z e. CC -> ( 0p ` z ) = 0 ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ z e. CC ) -> ( 0p ` z ) = 0 ) | 
						
							| 30 | 20 23 14 14 24 27 29 | ofval |  |-  ( ( ph /\ z e. CC ) -> ( ( G oF x. 0p ) ` z ) = ( ( G ` z ) x. 0 ) ) | 
						
							| 31 | 6 18 | syl |  |-  ( ph -> G : CC --> CC ) | 
						
							| 32 | 31 | ffvelcdmda |  |-  ( ( ph /\ z e. CC ) -> ( G ` z ) e. CC ) | 
						
							| 33 | 32 | mul01d |  |-  ( ( ph /\ z e. CC ) -> ( ( G ` z ) x. 0 ) = 0 ) | 
						
							| 34 | 30 33 | eqtrd |  |-  ( ( ph /\ z e. CC ) -> ( ( G oF x. 0p ) ` z ) = 0 ) | 
						
							| 35 | 5 15 | syl |  |-  ( ph -> F : CC --> CC ) | 
						
							| 36 | 35 | ffvelcdmda |  |-  ( ( ph /\ z e. CC ) -> ( F ` z ) e. CC ) | 
						
							| 37 | 36 | subid1d |  |-  ( ( ph /\ z e. CC ) -> ( ( F ` z ) - 0 ) = ( F ` z ) ) | 
						
							| 38 | 14 17 25 17 26 34 37 | offveq |  |-  ( ph -> ( F oF - ( G oF x. 0p ) ) = F ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( ph -> ( ( F oF - ( G oF x. 0p ) ) = 0p <-> F = 0p ) ) | 
						
							| 40 | 38 | fveq2d |  |-  ( ph -> ( deg ` ( F oF - ( G oF x. 0p ) ) ) = ( deg ` F ) ) | 
						
							| 41 |  | dgrcl |  |-  ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) | 
						
							| 42 | 6 41 | syl |  |-  ( ph -> ( deg ` G ) e. NN0 ) | 
						
							| 43 | 42 | nn0red |  |-  ( ph -> ( deg ` G ) e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ph -> ( deg ` G ) e. CC ) | 
						
							| 45 | 44 | addlidd |  |-  ( ph -> ( 0 + ( deg ` G ) ) = ( deg ` G ) ) | 
						
							| 46 | 45 | eqcomd |  |-  ( ph -> ( deg ` G ) = ( 0 + ( deg ` G ) ) ) | 
						
							| 47 | 40 46 | breq12d |  |-  ( ph -> ( ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) <-> ( deg ` F ) < ( 0 + ( deg ` G ) ) ) ) | 
						
							| 48 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 49 | 5 48 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 50 | 49 | nn0red |  |-  ( ph -> ( deg ` F ) e. RR ) | 
						
							| 51 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 52 | 50 43 51 | ltsubaddd |  |-  ( ph -> ( ( ( deg ` F ) - ( deg ` G ) ) < 0 <-> ( deg ` F ) < ( 0 + ( deg ` G ) ) ) ) | 
						
							| 53 | 47 52 | bitr4d |  |-  ( ph -> ( ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) <-> ( ( deg ` F ) - ( deg ` G ) ) < 0 ) ) | 
						
							| 54 | 39 53 | orbi12d |  |-  ( ph -> ( ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) <-> ( F = 0p \/ ( ( deg ` F ) - ( deg ` G ) ) < 0 ) ) ) | 
						
							| 55 | 9 54 | mpbird |  |-  ( ph -> ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) | 
						
							| 56 |  | oveq2 |  |-  ( q = 0p -> ( G oF x. q ) = ( G oF x. 0p ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( q = 0p -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. 0p ) ) ) | 
						
							| 58 | 8 57 | eqtrid |  |-  ( q = 0p -> R = ( F oF - ( G oF x. 0p ) ) ) | 
						
							| 59 | 58 | eqeq1d |  |-  ( q = 0p -> ( R = 0p <-> ( F oF - ( G oF x. 0p ) ) = 0p ) ) | 
						
							| 60 | 58 | fveq2d |  |-  ( q = 0p -> ( deg ` R ) = ( deg ` ( F oF - ( G oF x. 0p ) ) ) ) | 
						
							| 61 | 60 | breq1d |  |-  ( q = 0p -> ( ( deg ` R ) < ( deg ` G ) <-> ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) | 
						
							| 62 | 59 61 | orbi12d |  |-  ( q = 0p -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) <-> ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) ) | 
						
							| 63 | 62 | rspcev |  |-  ( ( 0p e. ( Poly ` S ) /\ ( ( F oF - ( G oF x. 0p ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. 0p ) ) ) < ( deg ` G ) ) ) -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) | 
						
							| 64 | 12 55 63 | syl2anc |  |-  ( ph -> E. q e. ( Poly ` S ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |